From Fantastic Voyage to Soft Machines: two decades of nanotechnology visions (and some real achievements)

> Richard Jones University of Sheffield

Three visions of nanotechnology...

1. Drexler's mechanical vision

2. Biological/ soft machines

3. Quantum nanodevices

... and two narratives about technological progress

Accelerating change...

...or innovation stagnation?

Who invented nanotechnology?

Richard Feynman (1918-1988)

Theoretical Physicist, Nobel Laureate

"There's Plenty of Room at the Bottom" - 1959

FANTASTIC VOYAGE

STEPHEN BOYD RADUEL WELCH

SAUL DAVID · RICHARD FLEISCHER Harry Kleiner · David Dungan

OTTO KLEMENT * JAY LEWIS BIXBY**

ARTHUR KENNEDY

LEONARD ROSENMAN

EDMOND O'BRIEN DONALD PLEASENCE

Robert Heinlein?

A STREET AND SMITH PUBLICATIO

Norio Taniguchi?

Coined the term "nanotechnology" in 1974

Don Eigler?

1994 – used the STM (invented by Binnig & Rohrer) to rearrange atoms

"Engines of Creation"

K. Eric Drexler 1986

The history of technology : increasing precision and miniaturisation

Medieval macroengineering *Late medieval mine pump, Agricola*

19th century precision engineering *Babbage difference engine, 1832*

Modern micro-engineering *MEMS device, Sandia*

Where next?

Nanotechnology as "the principles of mechanical engineering applied to chemistry"

Ideas developed by K.Eric Drexler

Computer graphics and simulation

Technical objections to Drexler's vision

Drexler's Nanosystems: More research required

Josh Hall: "Noone has ever found a significant error in the technical argument. Drexler's detractors in the political argument don't even talk about it."

- Friction
- Uncontrolled mechanosynthesis
- Thermodynamic and kinetic stability of nanostructures
- Tolerance
- Implementation path
- Low level mechanosynthesis steps

"If x doesn't work, we'll just try y", versus an ever-tightening design space.

"Any material you like, as long as it's diamond"

- Nanosystems and subsequent MNT work concentrate on diamond
 - Strong and stiff (though not quite as stiff as graphite)
 - H-terminated C (111) is stable wrt surface reconstruction
- Potential disadvantages
 - Not actually the thermodynamic ground state (depends on size and shape - clusters can reconstruct to diamond-filled fullerene onions)
 - Non-ideal electronic properties. Many designs in Nanosystems explicitly demand other materials (e.g. electrostatic motor).

How to make a nanobot

Not like this!

"Nanobot Computers of the Future" *Microsoft Encarta on-line encyclopedia*

What's wrong with this nanobot?

Physics looks different when you're small...

Viscosity dominates - how do we move it around?

At the nanoscale, water is gooey and viscous

Characteristics of flow are determined by the Reynolds number:

Density × velocity × size viscosity

 If we (or a dolphin) were shrunk to the nanoscale water would feel like the most viscous treacle...

Physics looks different when you're small...

Viscosity dominates - how do we move it around?

Buffetted by constant Brownian motion - how can we make anything rigid enough?

At the nanoscale, everything is continually shaken around

- Brownian motion random jostling by colliding water molecules.
- The smaller you are, the more important this is:

Velocity $\propto \sqrt{(kT)}/(size)^{3/2}$

 Causes internal flexing as well as motion

Sub-micron polymer particles in water

Physics looks different when you're small...

Viscosity dominates - how do we move it around?

Strong surface forces between neighbours - how do we stop them sticking together?

Buffetted by constant Brownian motion - how can we make anything rigid enough?

At the nanoscale, everything is sticky

- Strong surface forces make nanoscale objects tend to stick to each other
- Proteins are particularly sticky, hence biocompatibility difficulties

TEM image of aggregated gold nanoparticles

Physics looks different when you're small...

Viscosity dominates - how do we move it around?

Buffetted by constant Brownian motion - how can we make anything rigid enough? Strong surface forces between neighbours - how do we stop them sticking together?

Surfaces rapidly fouled by adsorbed proteins how can we make it biocompatible?

How can we make one? How can we make 10 trillion?

Is it impossible to make nanoscale machines?

Is it impossible to make nanoscale machines?

No - cell biology is full of them!

T4 bacteriophage infecting E.Coli: Leiman et al., Cell *118*, pp. 419–429 Rossman group, Purdue U.

Biology is astonishingly efficient at the nanoscale!

ATP-synthase a sophisticated nanomachine that almost all living things share...

Creates ATP, life's fuel. >95% efficient.

Animation: Molecular Biology of the Cell Alberts et el.

Biology is nanotechnology that works!

- Design principles quite different from macro-engineering
- Exploits the different physics at the nanoscale
- Scaled down macro-engineering won't work better that biology - don't worry about grey goo!

Why is biological nanotechnology so effective?

- Design principles quite different from macroengineering
- Exploits the different physics at the nanoscale: Surface forces + Brownian motion = self-assembly

Brownian motion + lack of stiffness

= conformational transitions

Weak binding + Brownian motion

= chemical computing

• Can we copy these design principles?

Surface forces + Brownian motion = self-assembly

 Complex structures in nature are made by self-assembly

Information flow in protein self-assembly

1 mlgkndpmcl vlvllgltal lgicqggtgc ygsvsridtt gascrtakpe glsycgvras 61 rtiaerdlgs mnkykvlikr vgealciepa viagiisres hagkilkngw gdrgngfglm 121 qvdkryhkie gtwngeahir qgtrilidmv kkiqrkfprw trdqqlkggi saynagvgnv 181 rsyermdigt lhddysndvv araqyfkqhg y

Synthetic self assembly

monomers : styrene, dienes, acrylates, oxirans, siloxanes synthesis : mainly living anionic polymerisation $M_w/M_n \approx 1.05$

Synthetic self-assembly - DNA

Simplicity of base-pair interaction allows precise design of sequences that self-assemble into complex 3-d structures e.g. Seeman, Rothemund, Turberfield

Brownian motion + lack of stiffness = conformational transitions

- Motor proteins change shape in response to changes in the environment
- This is how our muscles work

Simulation of the motor protein kinesin Vale & Milligan, Science **288** 88 (2000)

What would a realistic medical nanobot look like?

More likely to be bio-inspired
Early prototypes - drug delivery devices like stealth liposomes
How could we power and steer a more advanced version?

Certainly not like the popular vision!

E. Coli bacteria

С

В

Self-assembled vesicles & polymersomes

Block copolymers

DE Discher & A Eisenberg, *Science* (2002), **297**, 967-973.

Block copolymers make thicker & tougher membranes than lipids

Wide range of chemistry available to fabricate "molecular bags"

Vesicles with a narrow size distribution determined by the size of surface patterning

Howse, Jones, Battaglia, Ducker, Leggett, Ryan Templated Formation of Giant Polymer Vesicles with Controlled Size Distributions Nature Materials

Some new therapies will not be possible without nanotechnology

siRNA – only possible with sophisticated delivery devices

FDA News Release

For Immediate

Release

FDA approves first-of-its kind targeted RNAbased therapy to treat a rare disease

First treatment for the polyneuropathy of hereditary transthyretin-mediated amyloidosis in adult patients

f SHARE	Y TWEET	in LINKEDIN	🕖 PIN IT	EMAIL	

August 10, 2018

Lorenzer et al https://doi.org/10.1016/j.jconrel.2015.02.003

Moving around

Different strategies needed for low Reynolds number

One way of propelling a nanobot

Osmotic pressure gradient

Particle with one half coated with catalyst

Ramin Golestanian

Self-motile particles

 $2 H_2O_2 \rightarrow 2 H_2O + O_2$

Micron sized polystyrene sphere half coated with platinum

Jon Howse + RALJ

Pt

Pt H_2O_2

Each trace ; 127 x 127 μ m, 25 sec

A real nanobot

Assembly from external blueprint

Hard materials, mechanical paradigm

Separation of hardware and software

Design

Self-assembly, out-of equilibrium pattern formation

Soft materials, responsiveness and shape change

Coupling of hardware and software

Evolution

Photosynthesis

- Biology is quite effective at harvesting solar energy.
- Is there anything we can learn from how photosynthesis works?
- Starting point is the absorption of photons by dye molecules to produce excitons

Molecular Biology of the Cell. 4th edition. Alberts B, Johnson A, Lewis J, et al.New York: Garland Science; 2002. http://www.ncbi.nlm.nih.gov/books/NBK26819/#A2576

Excitonic materials vs inorganic semiconductors?

Strong coupling between charge states and molecular conformation

Energy level diagrams for semiconducting polymers

An electron-hole pair (exciton) in PPV

A bilayer organic solar cell Light photon

Hence low efficiency ~ 7

Photosynthetic centres have very precise nanostructures to direct the charge to where its needed

A self-assembled complex of protein molecules and dyes Bulk heterojunction PVs as crude selfassembled systems to optimise charge separation and transport

The quantum domain

- Drexler's conception of nanotechnology is entirely classical – not quantum – in character
- The physics of "Soft Machines" is largely classical statistical mechanics
- Yet early discussions of the potential of nanotechnology focused on the quantum mechanical character of the very small
- "Below about 50 nm something that scientists call the quantum size effect kicks in: quantum mechanics takes over from classical mechanics" (ETC Group, The Big Down, 2003)

Size effects in semiconductor nanoparticles

Quantum confinement means that bandgaps depend on size in semiconductor nanoparticles

Combining organic semiconductors with inorganic quantum dots

100% efficient downconversion through singlet fission in composite nanoparticles

2 Red photon out 'multiplication' of photons

1 nm

Akshay Rao, Neil Greenham, Richard Friend – structural characterisation by Mike Weir + RALJ

Real quantum magic arises from coherence and entanglement

- Currently a live debate about how important quantum coherence is for photosynthesis and excitonic solar cells
- But the real prize for controlling coherence and entanglement is for quantum information and quantum computing

Majorana modes for noise tolerant quantum computing?

"Majorana modes" form at each end of the nanowire

The two Majorana modes are quantum entangled to form a single quantum state, which is protected against disturbance from noise in the environment.

Accelerating change – or innovation stagnation?

 Technological innovation is accelerating

 Technological innovation is slowing down

The economic facts on the ground

US Labor productivity, all business

If there was a "new economy", it was less dynamic than the postwar decades And since the global financial crisis, productivity growth lowest in living memory

Diminishing returns in technological innovation?

End of exponential growth in microprocessor performance

From Computer Architecture: A Quantitative Approach (6th edn) by John Hennessy & David Patterson

Diminishing returns in technological innovation?

Erooms' law – exponentially falling R&D productivity in the pharma/biotech industry

Figure 3.1. Eroom's law: the number of new molecules approved by the US Food and Drug Administration (pharma and biotech) per US\$bn global R&D spending.

Semiconductors, computers and pharmaceuticals are in the top 5 contributors to the US productivity slowdown

Figure 3. Contributions to manufacturing sector multifactor productivity growth by industries with the largest relative declines in contributions from 1992–2004 to 2004–16

Soft Machines: 14 years on

- Published 2004: since then:
- Drexlerian nanotechnology
 - essentially no progress
- Soft Machines:
 - self-assembly, DNA nanotech, artificial molecular motors & active matter
- Quantum nanotech:
 - fantastic physics, it may even lead to practical quantum computing
- Economic impact
 - Still to materialise at scale.