
LLNL-TR-791918

DNN Approximation of Nonlinear
Finite Element Equations

A. Hamilton, T. Tran, M. B. Mckay, B. Quiring, P.
S. Vassilevski

September 30, 2019

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

DNN APPROXIMATION OF NONLINEAR FINITE ELEMENT
EQUATIONS

TUYEN TRAN2, AIDAN HAMILTON, MARICELA BEST MCKAY, BENJAMIN QUIRING,
AND PANAYOT S. VASSILEVSKI1,2

Abstract. We investigate the potential of applying (D)NN ((deep) neural net-
works) for approximating nonlinear mappings arising in the finite element discretiza-
tion of nonlinear PDEs (partial differential equations). As an application, we apply
the trained DNN to replace the coarse nonlinear operator thus avoiding the need to
visit the fine level discretization in order to evaluate the actions of the true coarse
nonlinear operator. The feasibility of the studied approach is demonstrated in a two-
level FAS (full approximation scheme) used to solve a nonlinear diffusion-reaction
PDE.

1. Introduction

In recent times deep neural networks, ([8]), have become the method of choice in
solving state of the art machine learning problems, such as classification, clustering,
pattern recognition, and prediction with enormous impact in many applied areas.
There is also an increasing trend in scientific computing to take advantage of the
potential of DNNs as nonlinear approximation tool, ([4]). This goes both for using
DNNs in devising new approximation algorithms as well as for trying to develop
mathematical theories that explain and quantify the ability of DNNs as universal
approximation methodology, with results originating in ([6]) to many recent works,
especially in the area of convolutional NN, ([16], [21], [7]). At any rate, this is still a
very active area of research with no ultimate theoretical result available yet.

Recently, the deep neural networks have been also utilized in the field of numerical
solution of PDEs ([1], [5], [9], [11], [12]), and for convolutional ones, see ([10]).

In this work, we investigate the ability of fully connected DNNs to provide an accu-
rate enough approximation of the nonlinear mappings that arise in the finite element
discretization of nonlinear PDEs. The finite element method applied to a nonlinear
PDE posed variationally, basically requires the evaluation of integrals over each finite
element which involves nonlinear functions that can be evaluated pointwise (generally,
using quadratures). The unknown function uh which approximates the solution of the
PDE is a linear combination of piecewise polynomials and the individual integrals for
any given value of uh can be evaluated accurately enough (in general, approximately,
using quadrature formulas). Typically, in a finite element discretization procedure,
we use refinement. That is, we can have a fine enough final mesh, a set of elements

1991 Mathematics Subject Classification. 65F10, 65N20, 65N30.
Key words and phrases. two-level FAS, DNN, finite elements, nonlinerar PDEs.
This work was performed under the auspices of the U.S. Department of Energy by Lawrence

Livermore National Laboratory under Contract DE-AC52-07NA27344.
1

Th, obtained from a previous level coarse mesh TH . One way to solve the fine-level
nonlinear discretization problem, is to utilize the existing hierarchy of discretizations.
One approach to maintain high accuracy of the coarse operators while evaluating
their actions is to utilize the accurate fine level nonlinear operator. That is, for any
given coarse finite element function, we expand it in terms of the fine level basis,
apply the action of the fine level nonlinear operator and then restrict the result back
to the coarse level, i.e., we apply a Galerkin procedure. This way of defining the
coarse nonlinear operator provides better accuracy, however its evaluation requires
fine-level computations. In the linear case, one can actually precompute the coarse
level operators (matrices) explicitly, which is not the case in the nonlinear case. This
study offers a way to generate a coarse operator, that can approximate the variation-
ally defined finite element one on coarse levels by training a fully connected DNN.
We do not do this globally, but rather construct the desired nonlinear mapping based
on actions of locally trained DNNs associated with each coarse element from a coarse
mesh TH . This is much more feasible than training the actions of the global coarse
nonlinear mapping; these will have as input many coarse functions (i.e., their coeffi-
cient vectors) and are thus much bigger and hence much more expensive than their
restrictions to the individual coarse elements.

The remainder of this paper is structured as follows. In Section 2, we introduce
the problem in a general setting. Then in the following Section 2.3, we present a
computational study of the training of the coarse nonlinear operators by varying the
domain (a box in a high-dimensional space with size equal to the number of local
coarse degrees of freedom). The purpose of the study is to assess the complexity of
the local DNNs depending on the desired approximation accuracy. We also show the
approximation accuracy of the global coarse nonlinear mapping (of our main interest)
which depends on the coarsening ratio H/h. In Section 3, we introduce the FAS (full
approximation scheme) solver ([2]), and in the following section 3.5, we apply the
trained DNNs to replace the true coarse operator in a two-level FAS for a model
nonlinear diffusion-reaction PDE discretized by piecewise linear elements. Finally, in
Section 4, we draw some conclusions and outline few directions for possible future
work.

2. Approximation for nonlinear mappings using DNNs

2.1. Problem setting. We are given the system of nonlinear equations

(2.1) F (u) = f .

Here, F is a mapping from Rn 7→ Rn, and we have access only at its actions (by
calling some function).

We assume that the solution belongs to a box K ⊂ Rn, e.g., u ∈ [−a, a]n for some
value of a > 0. Typically, nonlinear problems like (2.1) are solved by iterations, and
for any given current iterate u, we look for a correction g such that u := u + g gives
a better accuracy. This motivates us to rewrite (2.1) as

G(u, g) = f ,
2

where

G(u, g) := F (u + g)− F (u) and f := f − F (u).

Our goal is to train a DNN where u and g are the inputs and G(u, g) is the output.
The input u is drawn from the box K, whereas the correction g is drawn from a small
ball B = {‖g‖ ≤ δ}. In our study to follow, we vary the parameters a and δ for a
particular mapping F (and respective G) to assess the complexity of the resulting
DNN and examine the approximation accuracy. The general strategy is as follows.
We draw ma ≥ 1 vectors from the box K using Sobol sequence ([17], [18]) and mδ ≥ 1
vectors from the ball B, also using Sobol sequence. The alternative would be to simply
use random points in K and B, however Sobol sequence is better in terms of cost
versus approximation ability (at least for smooth mappings). Once we have built the
DNN with a desired accuracy on the training data, we test its approximation quality
on a number of randomly selected points from K and B.

Our results are documented in the next subsection for a particular example of a
finite element mapping; first on each individual subdomain (coarse element) T ∈ TH
and then for its global action composed from all locally trained DNNs.

2.2. Training DNNs for model nonlinear finite element mapping. We con-
sider the nonlinear PDE

(2.2)
−div(k(u)∇u) + u = f on Ω,

∇u · ~n = 0 on ∂Ω.

Here, Ω is a polygon in R2 and k(u) is a given positive nonlinear function of u.
The variational formulation for (2.2) is: find u ∈ H1(Ω) such that∫

Ω

(k(u)∇u · ∇v + uv) dx =

∫
Ω

fv dx for all v ∈ H1(Ω).

The above problem is discretized by piecewise linear finite elements on triangular
mesh Th that yields a system of nonlinear equations.

In this section, we consider the coarse nonlinear mapping that corresponds to a
coarse triangulation TH which after refinement gives the fine one Th. The coarse
finite element space is VH and the fine one is Vh. By construction, we have VH ⊂ Vh.
Let {φHi }

NH
i=1 be the basis of VH and {φhi }

Nh
i=1 be the basis of Vh. These are piecewise

linear functions associated with their respective triangulations TH and Th. More
specifically, we use Lagrangian bases, i.e., φHi and φhi are associated with the sets of
vertices, NH and Nh, of the elements of their respective triangulations.

The coarse nonlinear operator F := FH is then defined as follows. Let uH ∈ VH be
a coarse finite element function. Since VH ⊂ Vh, we can expand uH in terms of the
basis of Vh, i.e.,

uH =
∑

xi∈Nh

uH(xi)φ
h
i .

We can also expand uH in terms of the basis of VH , i.e., we have

uH =
∑

xi∈NH

uH(xi)φ
H
i .

3

In the actual computations we use their coefficient vectors

uc = (uH(xi))xi∈NH
∈ RNH and u = (uH(xi))xi∈Nh

∈ RNh .

These coefficient vectors are related by an interpolation mapping P (which is piecewise
linear), i.e., we have

u = Puc.

First we define the local nonlinear mappings F := FH
T , associated with each T ∈ TH .

In terms of finite element functions, we have as input uH restricted to T , and we
evaluate the integrals

FH
T : uH |T 7→

∫
T

k(uH)∇uH · ∇φHi dx, for all vertices xi of the coarse element T.

Each integral over T is computed as a sum of integrals over the fine-level elements τ ⊂
T , τ ∈ Th, using fine level computations, i.e., uH and φHi are linear on each τ and these
fine-level integrals are assumed computable (by the finite element software used to
generate the fine level discretization, which possibly employs high order quadratures).

In terms of linear algebra computations, we have uc, T = (uH(xi))xi∈NH∩T as an
input vector, and have as an output a vector FH

T (uc, T) of the same size, i.e., equal to
the number of vertices of T . Note that we will be training the DNN for the mapping
of two variables, uc, T and gc, T , i.e.,

GT (uc, T , gc, T) := FH
T (uc, T + gc, T)− FH

T (uc, T).

That is, the input vectors will have size two times bigger than the output vectors.
Once we have trained the local actions of the nonlinear mapping, the global action is
obtained by standard assembly, using the fact that

(2.3) G(uc, gc) =
∑
T∈TH

ITGT (uc, T , gc, T).

Here, IT stands for the mapping that extends a local vector defined on T to a global
vector by zero values outside T . For a global vector vc, vc, T = (IT)Tvc = vc|T
denotes its restriction to T .

In the following section, we provide actual test results for training DNNs, first for
the local mappings GT , and then for the respective global one G.

2.3. Training local DNNs for the model finite element mapping. We use
Keras, ([14]), a Python Deep Learning library to approximate nonlinear mappings.
Keras is a high-level neural networks API (Application Programming Interface),
written in Python and capable of running on top of TensorFlow ([15]). In this work,
we use a fully connected network. The Sequential model in Keras provides a way to
implement such a network.

The input vectors are of size 2nc (uc,T stacked on top of gc,T) and the desired
outputs are the actions (GT (uc,T , gc,T)) represented as vectors of size nc for any
given input. The network consists of few fully connected layers with tanh activation
at each layer. We use the standard mean squared error as the loss function.

4

In the tests to follow, we use data uc, T from the boxes K, and gc,T from balls B
of various sizes. Specifically, we performed the numerical tests with 10 uc, T vectors
each taken from

K = [−1, 1]nc , [−0.1, 0.1]nc , [−0.05, 0.05]nc , [−0.01, 0.01]nc ,

and 50 gc, T vectors drawn from balls B with radii δB = 0.1, 0.05, 0.01, 0.005, respec-
tively (i.e., the first K is paired with the first ball B, the second box K is paired with
the second ball B, and so on). In our test we have chosen nc = 4, that is, the local
sets T have four coarse dofs. Also, we vary the ratio H/h = 2, 4, 8, which implies
that we have 9, 16, and 81 fine dofs, respectively (while keeping fixed the number of
coarse dofs nc = 4 in T).

The network was trained with 3 layers, each with 16 neurons. The training al-
gorithm was provided by TensorFlow using the ADAM optimizer ([13]) which is a
variant of the SGD (stochastic gradient descent) algorithm, see, e.g., ([19]). We
used 500 epochs, batch size = 10, learning rate α = 0.001 along with β1 = 0.9 and
β2 = 0.999. For more details on the meaning of these parameters, we refer to ([14])
and ([19]).

Figure 1. Schematic representation of the used network architecture

Let GTDNN
be the action after the training. Tables 1, 2, and 3 show the average

of the relative errors using ‖‖2 and ‖‖∞ of
‖GT (uc, T , gc, T)−GTDNN

(uc, T , gc, T)‖2

‖GT (uc, T , gc, T)‖2
5

and
‖GT (uc, T , gc, T)−GTDNN

(uc, T , gc, T)‖∞
‖GT (uc, T , gc, T)‖∞

over 100 examples consisting of 10 uc, T

within the box K and 10 gc, T within the ball B.

K δB relative `2-error relative `∞-error
[−1, 1]nc 0.1 0.005209 0.007234
[−1, 1]nc 0.05 0.000829 0.001168
[−1, 1]nc 0.01 0.000245 0.000374
[−1, 1]nc 0.005 0.000125 0.000193

[−0.1, 0.1]nc 0.05 0.000131 0.000186
[−0.1, 0.1]nc 0.01 3.858919E-06 5.973702E-06
[−0.1, 0.1]nc 0.005 3.966236E-06 6.276684E-06

[−0.05, 0.05]nc 0.01 1.043632E-06 1.487640E-06
[−0.05, 0.05]nc 0.005 6.841004E-07 1.048721E-06
[−0.01, 0.01]nc 0.005 3.636231E-08 5.151947E-08

Table 1. The relative average L2 and L∞ errors for H/h = 2

K δB relative `2-error relative `∞-error
[−1, 1]nc 0.1 0.001198 0.001670
[−1, 1]nc 0.05 0.0007022 0.001021
[−1, 1]nc 0.01 0.000254 0.000377
[−1, 1]nc 0.005 1.692172E-05 2.455399E-05

[−0.1, 0.1]nc 0.05 1.692172E-05 2.455399E-05
[−0.1, 0.1]nc 0.01 3.105803E-06 4.837250E-06
[−0.1, 0.1]nc 0.005 2.251858E-06 3.573355E-06

[−0.05, 0.05]nc 0.01 8.565291E-07 1.322711E-06
[−0.05, 0.05]nc 0.005 6.394531E-07 9.717701E-07
[−0.01, 0.01]nc 0.005 2.872041E-08 4.041187E-08

Table 2. The relative average L2 and L∞ errors for H/h = 4

K δB relative `2-error relative `∞-error
[−1, 1]nc 0.1 0.001060 0.001010
[−1, 1]nc 0.05 0.000641 0.001003
[−1, 1]nc 0.01 0.000196 0.000292
[−1, 1]nc 0.005 1.141443E-05 1.723346E-05

[−0.1, 0.1]nc 0.05 1.151866E-05 1.744020E-05
[−0.1, 0.1]nc 0.01 2.756513E-06 4.175218E-06
[−0.1, 0.1]nc 0.005 2.115907E-06 3.441013E-06

[−0.05, 0.05]nc 0.01 8.378942E-07 1.221053E-06
[−0.05, 0.05]nc 0.005 5.626164E-07 8.913452E-07
[−0.01, 0.01]nc 0.005 2.645869E-08 3.999300E-08

Table 3. The relative average L2 and L∞ errors for H/h = 8

6

The approximation of the global coarse nonlinear operator is presented in Table 4.
As it is seen from formula (2.3), we can approximate each GT independently of each
other, and after combining the individual approximations (using the same assembly
formula with each GT replaced by its DNN approximation), we define the approxi-
mation to the global G. We use the same setting for training the individual neural
networks for each GT . We have decomposed Ω into several subdomains T ∈ TH so
that which each T has nc = 4. In this test, we chose H/h = 2.

In Table 4, we show how the accuracy varies for different local boxes K and re-
spective balls B. As before, we present the average of the relative L2 and L∞ errors.
One can notice that for finer h (and H = 2h), i.e., more local subdomains T , we
get somewhat better approximations of the global G. It should be expected since
with smaller h the finite element problem approximates better the continuous one.
Some visual illustration of this fact is presented in Figures 2, 3, 4, 5, 6, and 7. More
specifically, we provide plots of GT and GTDNN

for the data that achieves the min
and max L2 errors when the number of subdomains are 4, 16 and 64 corersponding
to box K = [−0.05, 0.05] and and ball B with δB = 0.005.

of subdomains
K = [−1, 1] K = [−0.1, 0.1] K = [−0.05, 0.05]
δB = 0.1 δB = 0.01 δB = 0.005

4
L2 error: 0.004838 6.379939E-05 9.578247E-06
L∞ error: 0.008154 0.000130 3.154789E-05

16
L2 error: 0.003847 4.363349E-05 1.112007E-06
L∞ error: 0.005229 0.000021 1.828478E-05

64
L2 error: 0.002977 7.388419E-06 8.997734E-07
L∞ error: 0.003401 2.789513e-5 3.907758E-06

100
L2 error: : 0.000909 5.655502e-6 9.043519E-08
L∞ error: 0.001688 1.542110e-5 4.098461E-07

Table 4. Comparison for different numbers of subdomains

For the next test, we have nc = 4 and H/h = 4. The same settings for neural
networks are used along with K = [−0.05, 0.05] and δB = 0.005. The results in
Table 5 show the average of the relative L2 and L∞ errors for different number of
subdomains.

of subdomains L2 min L2 max L2 L∞
4 2.204530E-06 1.012479E-04 5.276626E-06 2.367189E-05
16 1.307212E-07 2.768105E-05 7.107769E-07 2.068912E-06
64 4.8551896E-08 1.395091E-05 5.341155E-08 7.789968E-07

Table 5. The relative average L2 and L∞ errors for H/h = 4

As expected, since smaller h and fixed H gives better approximation of the nonlin-
ear operator, for the ratio H/h = 4 we do see better approximation than for H/h = 2.

7

(a) GT (uc, T , gc, T) (b) GTDNN
(uc, T , gc, T)

Figure 2. Plots of GT and GTDNN , gc, T
for four subdomains at the

(uc, T , gc, T) which achieves the min L2 error. The min relative error is
2.662757E−06.

(a) GT (uc, T , gc, T) (b) GTDNN
(uc, T , gc, T)

Figure 3. Plots of GT and GTDNN
for four subdomains at the

(uc, T , gc, T) which achieves the max L2 error. The max relative er-
ror is 1.122974E−04.

8

(a) GT (uc, T , gc, T) (b) GTDNN
(uc, T , gc, T)

Figure 4. Plots of GT and GTDNN
for sixteen subdomains at the

(uc, T , gc, T) which achieves the min L2 error. The min relative er-
ror is 8.886265E−07.

(a) GT (uc, T , gc, T) (b) GTDNN
(uc, T , gc, T)

Figure 5. Plots of GT and GTDNN
for sixteen subdomains at the

(uc, T , gc, T) which achieves the max L2 error. The max relative er-
ror is 1.285776E−05.

9

(a) GT (uc, T , gc, T) (b) GTDNN
(uc, T , gc, T)

Figure 6. Plots of GT and GTDNN
for sixty four subdomains at the

(uc, T , gc, T) which achieves the min L2 error. The min relative error is
1.493536E−07.

(a) GT (uc, T , gc, T) (b) GTDNN
(uc, T , gc, T)

Figure 7. Plots of GT and GTDNN
for sixty four subdomains at the

(uc, T , gc, T) which achieves the max L2 error. The max relative error
is 2.717447E−05.

10

3. Application of DNN approximate coarse mappings in two-level FAS

3.1. The FAS algorithm. A standard approach for solving (2.1) is to use Newton’s
method. The latter is an iterative process in which given a current iterate u, we
compute the next one, unext, by solving the Jacobian equation

(3.1) JF (u)y = r := f − F (u),

and then unext = u + y.
Typically, the Jacobian problem (3.1) is solved by an iterative method such as

GMRES (generalized minimal residual).
To speed-up the convergence, for nonlinear equations coming from finite element

discretizations of elliptic PDEs, such as (2.2), we can exploit hierarchy of discretiza-
tions. A popular method is the two-level FAS (full approximation scheme) proposed
by Achi Brandt, ([2]) (see also ([20])). For a recent convergence analysis of FAS, we
refer to ([3]).

To define the two-level FAS, we need a coarse version of F , which is another non-
linear mapping Fc : Rnc 7→ Rnc , for some nc < n. We also need its Jacobian Jc = JFc .
Again, we assume that both are available via their actions (by calling some appro-
priate functions). To communicate data between the original, fine level, Rn and the
coarse level, Rnc , we are given two linear mappings (matrices):

(i) Coarse-to-fine (interpolation or prolongation) mapping P : Rnc 7→ Rn.
(ii) Fine-to-coarse projection π : Rn 7→ Rnc , more precisely, we assume that

πP = I (then (Pπ)2 = Pπ is a projection). In our finite element setting, π is
simply the restriction of a fine-grid vector u to the coarse dofs, i.e., π = [0, I],
where the columns in I correspond to the coarse dofs viewed as subset of the
the fine dofs.

Then, the two-level FAS (TL-FAS) can be formulated as follows.

Algorithm 3.1 (Two-level FAS).
For problem (2.1), with a current approximation u, the two-level FAS method per-

forms the following steps to compute the next approximation unext.

• For a given m ≥ 1 apply m steps of (inexact) Newton algorithm, (3.1), to
compute ym and let u 1

3
= u + ym.

• Form the coarse-level nonlinear problem for uc

(3.2) Fc(uc) = fc ≡ Fc(πu 1
3
) + P T (f − F (u 1

3
)).

• Solve (3.2) accurately enough using Newton’s method based on the coarse Ja-
cobian Jc and initial iterate uc := πu 1

3
. Here we use enough iterations of

GMRES for solving the resulting coarse Jacobian residual equations

Jc(uc)yc = rc = fc − Fc(uc), and let uc := uc + yc,

until a desired accuracy is reached.
• Update fine-level approximation

u 2
3

= u 1
3

+ P (uc − πu 1
3
).

11

• Repeat the FAS cycle starting with u := unext = u 2
3

until a desired accuracy

is reached.

In what follows, we use the following equivalent form of the TL-FAS. At the coarse
level, we will represent uc := u0

c + gc, where u0
c = πu 1

3
is the initial coarse iterate

coming from the fine level, and we will be solving for the correction gc. That is, the
coarse problem in terms of the correction reads

F c(gc) = f c,

where
F c(gc) ≡ Gc(u

0
c , gc) = Fc(u

0
c + gc)− Fc(u0

c)
f c ≡ P T (f − F (u 1

3
)) = fc − Fc(u0

c).

The rest of the algorithm does not change, in particular, we have

rc = fc − Fc(uc)
= fc − Fc(u0

c + gc)
= f c + Fc(u

0
c)− Fc(u0

c + gc)
= f c −Gc(u

0
c , gc)

= f c − F c(gc),

and
u 2

3
= u 1

3
+ P (uc − πu 1

3
) = u 1

3
+ P (uc − u0

c) = u 1
3

+ Pgc.

3.1.1. The choice for Fc using DNN. In our finite element setting, a true (Galerkin)
coarse operator is P TF (P (.)), where P is the piecewise linear interpolation mapping
and F is the fine level nonlinear finite element operator. We train the global coarse
actions based on the fact that the actions of F and P can be computed subdomain-
by-subdomain employing standard finite element assembly procedure, as described
in the previous section. That is, F can be assembed by local FT s and the coarse
P TF (P (.)) can be assembled from local coarse actions P T

T FT (PT (.)) based on local
versions {PT} of P .

More specifically, we train for each subdomain T ∈ TH a DNN which takes as
input any pair of coarse vectors vc,T , gc, T ∈ Rnc and produces P T

T FT (PT (vc,T +
gc,T))− P T

T FT (PTvc,T) ∈ Rnc as our desired output. The global action P TF (P (vc +
gc))−P TF (P (vc)) is computed by assembling all local actions, and we use the same
assembling procdeure for the approximations obtained using the trained local DNNs.

The trained this way DNN gives the actions of our coarse nonlinear mapping F c(.).

3.2. Some details on implementing TL-FAS algorithm. We are solving the
nonlinear equation F (u) = f where the actions of F : Rn 7→ Rn are available. Also,
we assume that we can compute its Jacobian matrix for any given u, J(u).

We are also given an interpolation matrix P : Rnc 7→ Rn. Finally, we have a
mapping π : Rn 7→ Rnc such that πP = I on Rnc . This implies that Pπ is a
projection, i.e, (Pπ)2 = Pπ.

Consider the coarse nonlinear mapping F (uc) ≡ P T (F (Puc)) : Rnc 7→ Rnc .
We assume that an approximation G(vc, gc) to the mapping

Fc(vc + gc)− Fc(vc),
12

is available through its actions for a set of input vectors vc varying in a given box
K and for another input vector gc varying in a small ball B about the origin. For a
fixed vc, we denote F c(gc) = G(vc, gc).

We are interested in the following two-level FAS algorithm for solving F (u) = f .

Algorithm 3.2 (TL-FAS).
Input parameters:

• Initial approximation u0 sufficiently close to the exact solution u∗. For a
problem with a known solution, we choose u0 = u∗ + τ × (random vector),
where τ is an input (e.g., τ = 1, 0.1, 10.0, ...). The random vector has as
components random numbers in (−1, 1).
• δ (e.g., δ = 0.1, or δ = 0.5) - tolerance used in GMRES to solve approximately

the fine-level Jacobian equations.
• Maximal number Nmax = 1, 2 or 4, of fine-level inexact Newton iterations
• Additionally, maximal number of GMRES iterations, Imax = 2, or 5, allowed

in solving the fine-level Jacobian equations.
• δc (e.g., δc = 10−3), tolerance used in GMRES for solving coarse-level Jacobian

equations.
• τc (equal to 1 or 0.1, or 0.01) - step length in coarse-level inexact Newton

iterations.
• Maximal number of coarse-level GMRES iterations, Icmax = 1000.
• Maximal number of inexact coarse-level Newton iterations , N c

max = 10 or 100.
• Maximal number of FAS iterations, NFAS = 10.
• Tolerance for FAS iterations, ε = 10−6.

With the above input specified, a TL-FAS algorithm takes the form:

• FAS-loop: If visited < NFAS times perform the steps below. Otherwise exit.
– Perform Nmax fine-level inexact Newton iterations, which involve the fol-

lowing steps:
∗ For the current iterate u (the initial one, u = u0, is given as input)

compute residual

r = f − F (u).

∗ Compute Jacobian J(u).
∗ Solve approximately the Jacobian equation

J(u)y = r,

using at most Imax GMRES iterations or until reaching tolerance δ,
i.e.,

‖J(u)y − r‖ ≤ δ ‖r‖.
∗ Update u := u + y.

– Compute fine-level Jacobian J(u) and the coarse-level one Jc = P TJ(u)P .
– Compute uc = πu.
– Coarse-loop for solving

Fc(gc) := G(uc,gc) = f c ≡ P T (f − F (u)),
13

with initial guess gc = 0 where we keep uc and the coarse Jacobian Jc
fixed. The coarse-level loop reads:
∗ Compute coarse residual

rc = f c − F c(gc).

∗ Solve by GMRES, Jcyc = rc using at most Icmax iterations or until
we reach ‖Jcyc − rc‖ ≤ δc ‖rc‖.
∗ Update

gc := gc + τcyc.

∗ Repeat at most N c
max times the above three steps of the coarse-level

loop.
– Update fine-level iterate

u := u + Pgc.

– If ‖F (u)−f‖ > ε‖F (u0)−f)‖, go to the beginning of FAS-loop. Otherwise
exit.

3.3. Local tools for FAS. We stress again that all global actions of the coarse
operator (exact and approimate via DNNs) are realized by assembly of local actions.
All this is possible due to the inherent nature of the finite element method. We
illustrate the local subdomains in Fig. 8 and Fig. 9.

(a) Global coarse mesh (b) Global fine mesh

Figure 8. An example of domain decomposition for 4 subdomains
when we have H/h = 2.

More specifically, in Figures 8 and 9 , on the left we have an example of a global
coarse mesh TH , with the shaded area being the submesh contained in T ∈ ΩH -one
of the four subdomains in TH . On the right, we show the submesh of the global fine
mesh Th restricted to the subdomain T .

14

(a) Global coarse mesh (b) Global fine mesh

Figure 9. A visualization when we have 4 subdomains and H/h = 4.

3.4. Some details on implementing TL-FAS with DNNs. Using the tools and
algorithms from the previous sections, we first outline an implementation that involves
training inside FAS and then present the algorithm for training outside the FAS.
Training on the outside is useful because the training is then only part of a one
time set up cost and independent of the r.h.s. The two-level training inside FAS is
formulated as follows.

Algorithm 3.3 (Training inside FAS). With the inputs specified in algorithm 3.2,
the training inside takes the following steps

• Perform Nmax fine-level inexact Newton iterations, which involve steps in al-
gorithm 3.2 and update u.

• Compute fine-level Jacobian J(u) and the coarse-level one Jc = P TJ(u)P .
• Compute uc = πu.
• We generate samples which are in the neighborhood of uc. More specifically,

we use a shifted box K = {uc}+[−0.05, 0.05] and draw 10 to 20 vectors uc from
K and 30 to 50 vectors gc from the ball B with radius δB = 0.005. We use
these sets as inputs for training the DNNs to get the approximations of Gc, T

for each subdomain T ∈ TH and assemble them into a global coarse action,
Gc. Next, we enter the coarse-level loop as in Algorithm 3.2 and the rest of
the algorithm remains the same. Note that the training is done only for the
first fine-level iterate u.

The following implementation gives the approximations of Gc, T for each subdomain
T and can be performed outside the Algorithm 3.2.

Algorithm 3.4 (Training outside FAS). Given the inputs specified in algorithm 3.2,in
order to get the approximations of Gc, T we proceed the training outside as follows

15

• We take M inputs u from the box K = [−0.05, 0.05], and m corrections g are
drawn from the ball B of radius δB = 0.005. This gives a training set with
M × n vectors.
• We then use these vectors as inputs and train the neural networks which pro-

vide approximations of Gc, T for each subdomain T ∈ TH . The latter after
assembly give the global coarse action, Gc.
• Next, we enter Algorithm 3.2 with this approximate Gc and the rest of the

algorithm remains the same.

3.5. Comparative results for FAS with exact and approximate coarse op-
erators using DNNs. In this section, we present some results for two level FAS
using the exact operators and its approximation from the training inside and outside
as mentioned in the previous section.

We perform the tests with the neural networks using the same settings in section 2.3
and test our algorithm for problem 2.1 with exact solution is u∗ = x2(1−x)2+y2(1−y)2

on the unit square in R2 with H/h = 2. For the FAS algorithm, we use the following
parameters:

• Initial approximation u0 = u∗ + τ × (random vector), where τ = 2 and the
random vector has as components random numbers in (−1, 1).
• δ = 10−6 - tolerance used in GMRES to approximately solve the fine-level

Jacobian equations.
• Maximal number Nmax = 2 of fine-level inexact Newton iterations and toler-

ance is 0.01.
• Maximal number of GMRES iterations, Imax = 4 allowed in solving the fine-

level Jacobian equations.
• δc = 10−8, tolerance used in GMRES for solving coarse-level Jacobian equa-

tions.
• τc = 0.1 - step length in coarse-level inexact Newton iterations for FAS two

levels with true operators, FAS training inside, and τc = 0.0001 for FAS
training outside.
• Maximal number of coarse-level GMRES iterations, Icmax = 10.
• Maximal number of inexact coarse-level Newton iterations , N c

max = 5 with
tolerance 10−4.
• Maximal number of FAS iterations, NFAS = 10.
• Tolerance for FAS iterations, ε = 10−6.

We present the results in Table 6 (TL-FAS with true coarse operator), Table 7
(TL-FAS with training inside), and Table 8 (TL-FAS with training outside). It can
be seen that the training inside does give similar results to the true operators and
even better in terms of relative residuals. For four subdomains, the training outside
reached the same number of iterations in FAS as in Tables 6 and 7. However, we did
not achieve as small residuals as we could in the previous two cases. When we have
more subdomains, the training outside requires more iterations on the coarse level
than the other two approaches, but nevertheless it still meets the desired tolerance.

16

of subdomains
True Operators

FAS iteration # coarse iterations Relative residuals
4 1 5 0.174041

2 5 0.003939
3 5 4.377789E-06
4 1 1.081675E-11

16 1 5 0.161382
2 5 0.001406
3 1 3.843124E-07

64 1 5 0.162089
2 5 0.002728
3 1 2.393705E-06
4 1 1.141114E-09

Table 6. Results for FAS using true operators with different number
of subdomains using k = 1 + u2.

of subdomains
Approximate Operators with inside training

FAS iteration # coarse iterations Relative residuals
4 1 5 0.171590

2 5 0.003733
3 1 3.826213E-06
4 1 8.325530e-12

16 1 5 0.160120
2 5 0.001286
3 1 2.946412E-07

64 1 5 0.159982
2 5 0.001521
3 1 4.671780E-07

Table 7. Results for training NNs inside with different number of
subdomains using k = 1 + u2.

17

of subdomains
Approximate Operators with outside training

FAS iteration # coarse iterations Relative residuals
4 1 5 0.186189

2 5 0.004746
3 5 5.300791E-06
4 5 5.623933e-10

16 1 5 0.174228
2 5 0.002257
3 5 1.246687E-06
4 5 4.025110E-09

64 1 5 0.176886
2 5 0.004503
3 5 1.488866E-05
4 5 2.061581E-08

Table 8. Results for training NNs outside with different number of
subdomains using k = 1 + u2.

We also studied the case H/h = 4 with the same setting as above for the neural
networks, the same k = 1 + u2 and the exact solution. The following tables (Tables
9, 10, and 11) represent the results for 4 and 16 subdomains. They show similar
behaviour as in the previous case of H/h = 2.

of subdomains
True Operators

FAS iteration # coarse iterations Relative residuals
4 1 5 0.171241

2 5 0.002991
3 1 2.325478E-06
4 1 6.696561e-12

16 1 5 0.168299
2 5 0.002804
3 1 4.457398E-06
4 1 3.394781E-08

Table 9. Results for FAS using true operators with H/h = 4.

of subdomains
Approximate Operators with inside training

FAS iteration # coarse iterations Relative residuals
4 1 5 0.172198

2 5 0.003446
3 1 1.292521E-06
4 1 6.055108e-12

16 1 5 0.167623
2 5 0.002594
3 5 4.748181E-06
4 1 2.390020E-09

Table 10. Results for NNs training inside with H/h = 4.

18

of subdomains
Approximate Operators with outside training

FAS iteration # coarse iterations Relative residuals
4 1 5 0.172328

2 5 0.003307
3 1 3.165177E-06
4 1 2.408886e-10

16 1 5 0.168451
2 5 0.002085
3 5 1.009380E-06
4 1 2.813398E-09

Table 11. Results for NNs training outside with H/h = 4.

3.5.1. Cost of training. To get a sense of the cost, for the case of 4 subdomains
and H/h = 2, we display the accuracy and the loss values, characteristics provided
by Keras, commonly used in training DNNs. Here, we only present the results for
one of the four subdomains since the outcomes are similar for all other subdomains.
Figure 10 shows plots for training inside whereas Figure 11 for the training outside
FAS.

(a) Training and testing accuracy (b) Training and testing loss

Figure 10. Plots of the accuracy at every 50 epochs and the log scale
of loss values at every 50 epochs for one subdomain. We use 80% of
the number of vectors for training purpose and 20% for testing. Here,
we do the training inside the FAS.

19

(a) Training and testing accuracy (b) Training and testing loss

Figure 11. We do the training outside the FAS and use all the
data/vectors for testing the accuracy as well as the loss values. We
plot the accuracy at every 50 epochs and the log scale of loss values at
every 50 epochs for one subdomain.

3.5.2. Results for different nonlinear coefficients k = k(u). Next, we consider 4 sub-
domains with H/h = 2 for different coefficients k. We use the same settings for the
initial inputs and the neural networks as specified at the beginning of this section.
We see in Table 12, Table 13, Table 14, Table 15, Table 16 and Table 17 that the
results are comparable for all of the used coefficients k = k(u).

More specifically, the results for k = 1 + e−u + x2 + y2 are found in Table 12,
Table 13, Table 14.

FAS iteration # coarse iterations Relative residuals
1 5 0.128534
2 5 0.000738
3 1 3.857236E-07

Table 12. Results for FAS using true operators

FAS iteration # coarse iterations Relative residuals
1 5 0.127007
2 5 0.000706
3 1 2.677881E-07

Table 13. Results for FAS with training inside

FAS iteration # coarse iterations Relative residuals
1 5 0.141989
2 5 0.001091
3 5 7.363723E-07

Table 14. Results for FAS with training outside

20

Similarly, for k = 1 + e−u, we have the results displayed in Table 15, Table 16 and
Table 17.

FAS iteration # coarse iterations Relative residuals
1 5 0.127675
2 5 0.000701
3 1 2.662172E-07

Table 15. Results for FAS with true operators

FAS iteration # coarse iterations Relative residuals
1 5 0.124039
2 5 0.000535
3 1 1.782604E-07

Table 16. Results for FAS with training inside

FAS iteration # coarse iterations Relative residuals
1 5 0.141077
2 5 0.001084
3 5 7.305067E-07

Table 17. Results for FAS with training outside

3.5.3. Illustration of the computed approximate solutions. We also provide illustration
for the approximate solutions obtained from Newton method using the nonlinear
operators from the training outside FAS and project them back to the fine level along
with the true solutions in the following figures 12, 13 and 14 for several subdomain
cases. Here, we use the true solution u = x2(1− x)2 + y2(1− y)2. These illustrations
demonstrate the potential for using the trained DNNs as accurate discretization tool.

(a) True solution (b) Approximate solution

Figure 12. Plots of approximate and true solutions for 4 subdomains.

21

(a) True solution (b) Approximate solution

Figure 13. Plots of approximate and true solutions for 16 subdomains.

(a) True solution (b) Approximate solution

Figure 14. Plots of approximate and true solutions for 64 subdomains.

Similarly, we perform the test with the exact solution u = cos(πx)cos(πy). Figure
15, 16, and 17 show the plots of approximate solutions and true solutions for different
number of subdomains.

22

(a) True solution (b) Approximate solution

Figure 15. Plots of approximate and true solutions for 4 subdomains.

(a) True solution (b) Approximate solution

Figure 16. Plots of approximate and true solutions for 16 subdomains.

23

(a) True solution (b) Approximate solution

Figure 17. Plots of approximate and true solutions for 64 subdomains.

4. Conlusions and future work

The paper presented first encouraging results for approximating coarse finite ele-
ment nonlinear operators for model diffusion reaction PDE in two dimensions. These
operators were successfully employed in a two-level FAS for solving the resulting sys-
tem of nonlinear algebraic equations. The resulting DNNs are quite expensive to
replace the true Galerkin coarse nonlinear operators, however once constructed, one
could in principle use them for solving the same type nonlinear PDEs with differ-
ent r.h.s. Upto a certain extent we can control the DNN complexity by choosing
larger ratio H/h and finally, it is clear that the training since it is local, subdomain-
by-subdomain, and independent of each other, one can exploit parallelism in the
training. Another viable option is to use convolutional DNNs instead of the currently
employed fully connected ones. Also, a natural next step is to apply recursion, thus
ending up with a hierarchy of trained coarse DNNs for use as coarse nonlinear dis-
cretization operators. There is one more part where we can apply DNNs, namely to
get approximations to the coarse Jacobians, Jc(uc,T) (also done locally). Here, the
input is the local coarse vector uc, T and the output will be a local matrix Jc,T (uc,T).
It is also of interest to consider more general nonlinear, including stochastic, PDEs,
which is a widely open area for future research.

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Nei-

ther the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes

any warranty, expressed or implied, or assumes any legal liability or responsibility for the accu- racy, completeness,

or usefulness of any information, apparatus, product, or pro- cess disclosed, or represents that its use would not in-

fringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,

trademark, manufacturer, or otherwise does not necessarily constitute or im- ply its endorsement, recommendation,

or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions

24

of authors expressed herein do not necessarily state or reflect those of the United States gov- ernment or Lawrence

Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

References

[1] L. Bar and N. Sochen, Unsupervised deep learning algorithm for pde-based for-
ward and inverse problems, 2019. arXiv: 1904.05417.

[2] A. Brandt and O. Livne, Multigrid techniques. Society for Industrial and Applied
Mathematics, 2011. doi: 10.1137/1.9781611970753.

[3] L. Chen, X. Hu, and S. M. Wise, “Convergence analysis of a generalized full
approximation storage scheme for convex optimization problems,” Mathematics
of computation, 2018.

[4] T. Chen and H. Chen, “Universal approximation to nonlinear operators by neu-
ral networks with arbitrary activation functions and its application to dynamical
systems,” Ieee transactions on neural networks, vol. 6, no. 4, pp. 911–917, 1995.

[5] M. M. Chiaramonte and M. Kiener, Solving differential equations using neural
networks, http://cs229.stanford.edu/proj2013/, 2017.

[6] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Math-
ematics of control, signals and systems, vol. 2, no. 4, pp. 303–314, Dec. 1989.
[Online]. Available: https://doi.org/10.1007/BF02551274.

[7] I. Daubechies, R. DeVore, S. Foucart, B. Hanin, and G. Petrova, Nonlinear
approximation and (deep) relu networks, 2019. arXiv: 1905.02199.

[8] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. The MIT Press, 2016.
[9] J. Han, A. Jentzen, and W. E, “Solving high-dimensional partial differential

equations using deep learning,” 2018. arXiv: 1707.02568.
[10] J. He and J. Xu, “Mgnet: A unified framework of multigrid and convolutional

neural network,” Science china mathematics, vol. 62, no. 7, pp. 1331–1354, Jul.
2019. doi: 10.1007/s11425-019-9547-2.

[11] J.-T. Hsieh, S. Zhao, S. Eismann, L. Mirabella, and S. Ermon, Learning neural
pde solvers with convergence guarantees, 2019. arXiv: 1906.01200.

[12] T.-W. Ke, M. Maire, and S. X. Yu, Multigrid neural architectures, 2016. arXiv:
1611.07661.

[13] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” Corr,
vol. abs/1412.6980, 2014.

[14] S. Pal and S. Gulli, Deep learning with keras: Implementing deep learning models
and neural networks with the power of python. Packt Publishing, 2017.

[15] N. Shukla, Machine learning with tensorflow. Manning Publications Co., 2018.
[16] J. W. Siegel and J. Xu, On the approximation properties of neural networks,

2019. arXiv: 1904.02311.
[17] I. M. Sobol’, “On the distribution of points in a cube and the approximate eval-

uation of integrals,” Ussr computational mathematics and mathematical physics,
vol. 7, no. 4, pp. 86–112, 1967.

[18] I. M. Sobol’, D. Asotsky, A. Kreinin, and S. Kucherenko, “Construction and
comparison of high-dimensional sobol’ generators,” Wilmott, vol. 2011, no. 56,
pp. 64–79, 2011.

25

http://arxiv.org/abs/1904.05417
http://dx.doi.org/10.1137/1.9781611970753
http://cs229.stanford.edu/proj2013/
https://doi.org/10.1007/BF02551274
http://arxiv.org/abs/1905.02199
http://arxiv.org/abs/1707.02568
http://dx.doi.org/10.1007/s11425-019-9547-2
http://arxiv.org/abs/1906.01200
http://arxiv.org/abs/1611.07661
http://arxiv.org/abs/1904.02311

[19] G. Strang, Linear algebra and learning from data. Wellesley-Cambridge Press,
Feb. 2019.

[20] P. S. Vassilevski, Multilevel block factorization preconditioners: Matrix-based
analysis and algorithms for solving finite element equations. Springer Science
& Business Media, 2008.

[21] D.-X. Zhou, Universality of deep convolutional neural networks, 2018. arXiv:
1805.10769.

1Center for Applied Scientific Computing, Lawrence Livermore National Labo-
ratory, P.O. Box 808, L-561, Livermore, CA 94551, U.S.A.

E-mail address: tuyen2@pdx.edu, hamilton49@llnl.gov, bestmckay1@llnl.gov, quiring1@llnl.gov,

vassilevski1@llnl.gov

2Fariborz Maseeh Department of Mathematics and Statistics, Portland State Uni-
versity, Portland, Oregon, USA

E-mail address: tuyen2@pdx.edu, panayot@pdx.edu

26

http://arxiv.org/abs/1805.10769

