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Abstract. Scalable approaches for uncertainty quantification are necessary for character-
izing prediction confidence in large-scale subsurface flow simulations with uncertain perme-
ability. To this end we explore a multilevel Monte Carlo approach for estimating posterior
moments of a particular quantity of interest, where we employ an element-agglomerated
algebraic multigrid (AMG) technique to generate the hierarchy of coarse spaces with guar-
anteed approximation properties for both the generation of spatially correlated random
fields and the forward simulation of Darcy’s law to model subsurface flow. In both these
components (sampling and forward solves), we exploit solvers that rely on state-of-the-art
scalable AMG. To showcase the applicability of this approach, numerical tests are performed
on two 3D examples – a unit cube and an egg-shaped domain with an irregular boundary
– where the scalability of each simulation as well as the scalability of the overall algorithm
are demonstrated.

Keywords. scalable uncertainty quantification, Bayesian inference, multilevel methods,
multilevel Monte Carlo, algebraic multigrid

1. Introduction

A major challenge in large-scale (and extreme-scale) predictive modeling is the scalability
of numerical algorithms. While the last several decades have leant themselves to the de-
velopment of scalable solvers, such as multigrid, for solving systems of partial differential
equations (PDEs), there has been a more recent push for forming highly parallelizable and
scalable methods for performing uncertainty quantification (UQ). In particular, with the
growing ability to incorporate high-dimensional uncertainties of model parameters, e.g., spa-
tially varying coefficients, in large-scale simulations, there is a need to formulate algorithms
that are scalable with increasing dimension of the uncertain parameter. While the probabil-
ity distribution of the uncertain parameter (referred to as the prior) may be assumed based
on expert knowledge, further improvement in the uncertainty characterization may be made
by performing Bayesian inference, where the probability distribution of the uncertainty is
conditioned on available observational data (referred to as the posterior). A drawback of
this approach is that many methods are intractable for large-scale simulations.
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As an example, and the focus of this work, Bayesian inference is applied to Darcy’s law,
which relates the underlying permeability field, pressure, and velocity through a porous
medium, where the permeability field is treated as uncertain. In many cases we may rely on
expert opinion to describe the underlying subsurface field structure and thus permeability
field; however, given the heterogeneity of the soil and limited availability of data, treating
the permeability as a spatially correlated random field to account for this lack of knowledge
will provide more informative predictions. Furthermore, observational data, in the form of
local pressure measurements, may be used to further improve how we characterize the un-
certainty in the permeability field via Bayesian inference. For moderate sized discretization
problems, performing Bayesian inference on Darcy’s law is already computationally challeng-
ing, and many approaches have been developed to accelerate performing inverse UQ. Given
the expansive physical domain of interest for such problems that we consider, additionally
we require large-scale simulations to account for large, irregular 3D spatial domains with a
finely resolved unstructured mesh, resulting in extremely computationally demanding UQ
approaches, where the complete algorithm must be scalable.

To this end, the goal of this work is to estimate the statistical moments of a particular
quantity of interest (QoI) Q that is estimated from output solutions of the numerical model.
In general, Q is a functional of the uncertain random variable u with prior density πprior(u),
and we seek to estimate the statistical moments of Q with respect to the posterior density
π(u|y), that is, the density of u conditioned on available observational data denoted as
y. While there is no closed form for the posterior density for our problems of interest,
Bayes’ law provides the relationship between the prior and posterior that aids in sampling
approaches. However, as we consider the unknown u to be a spatially varying field (related to
the permeability field), our sampling strategies are limited to Monte Carlo-based approaches.

Often, when seeking posterior moments of a QoI, we may consider approaches that target
samples of Q from the posterior distribution, such as Markov chain Monte Carlo (MCMC)
[37, 21, 18]. For large-scale 3D problems, standard MCMC is not feasible as it typically
requires searching the parameter space and forming a possibly infeasible number of time-
intensive forward simulations. An active area of research focuses on developing acceleration
approaches for MCMC. Such methods include utilizing gradient and Hessian information
to modify the MCMC proposal (requiring additional solvers beyond the forward PDE), as
in [36, 42]. Other methods include multilevel approaches that utilize coarse grid solvers to
accelerate mixing, as in [24, 14] or – in addition to accelerating MCMC mixing – utilize a
telescoping sum to perform variance reduction (similar to multilevel Monte Carlo [22, 17, 7,
46]) resulting in fewer fine grid samples [26, 11, 25].

An alternative approach to target the posterior is to utilize importance sampling as is done
in sequential Monte Carlo [12, 38]. After drawing samples according to an initial distribution,
simulations are resampled according to a sequence of distributions. The resampling requires
calculating weights associated with each sample for each distribution in the sequence. Mul-
tilevel sequential Monte Carlo strategies are developed in [30, 5, 33], where the authors build
the sequence of distributions from coarse approximations of the posterior, and in [5] they
also employ a variance reduction strategy similar to multilevel Monte Carlo.

Of interest in this work is the ratio estimator [44, 9, 8, 43] as it enables us to form the
posterior estimates of the QoI while sampling from only the prior distribution, avoiding
the expensive acceptance-rejection process of MCMC. Furthermore, forming estimates from
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the prior distribution may be done with standard forward UQ methodologies and lever-
aging existing codebases. The works of [8, 43] compare Monte Carlo (MC), quasi-Monte
Carlo (QMC), and multilevel Monte Carlo (MLMC) methods to estimate the components
of this ratio estimator, indicating that QMC and MLMC see improved performance over
MC. However, for 3D problems of interest, the implementation of their work does not scale
in the overall simulation process, as they use a Karhunen–Loève expansion (KLE) to form
realizations of the permeability field. The primary issue when forming the KLE is that
the construction requires obtaining a (possibly low-rank) eigenvalue decomposition of the
covariance matrix. For large-scale problems of interest, this is not feasible, as näıve im-
plementations scale cubically with the dimension of the unknown u. Improvements may be
achieved with hierarchical matrix approaches resulting in log-linear scaling; however, storage
may become an issue. Another approach is circulant embedding [20]; and while possible to
perform in parallel, there is not software available that will perform circulant embedding
on unstructured meshes. For a parallelizable and scalable approach, we employ algebraic
multigrid (AMG) techniques – in particular element-agglomerated AMG (AMGe) – to both
generate the unknown random field realizations (as in developed in [39, 40]) and to perform
forward solves of Darcy’s model problem. Utilizing AMGe will allow for unstructured meshes
and simulations that scale linearly with the problem size.

In this paper, motivated by the theoretical derivations in [43], we extend their work to
solving the mixed Darcy equations using the multilevel, hierarchical sampler method from
[39, 40], resulting in a Bayesian inference method for estimating moments of a QoI with
respect to the posterior distribution with efficient overall scaling. The remainder of the
paper is organized into five main sections. In Section 2 we discuss Bayes’ law and provide
the framework for the ratio estimator as in [43]. In Section 3 the weak formulation of
the mixed Darcy equations is presented, followed by a discussion of the discrete form and
numerical solver. Section 4 provides background on the stochastic PDE implementation of
[39, 40], as well as the numerical solver applied in this work. In Section 5 we discuss notation
and main steps of MC and MLMC for performing UQ, and how these methods are applied
to the ratio estimator as in [43]. Finally, Section 6 presents the numerical results, where we
compare ratio estimates of MC and MLMC on the mixed Darcy equations. To this end, we
consider two 3D examples, to showcase the computational speed up and scalability of the
method.

2. Mathematical Framework of Bayesian Inverse Problems

Following the Bayesian approach to inverse problems, we seek to estimate moments of a
QoI with respect to the posterior probability density of the unknown parameter conditioned
on observational data. Let u ∈ X denote the unknown parameter, with X a function
space defined over the spatial domain D, an open and bounded subset of Rd, d = 1, 2, 3.
In particular, given the probability space (Ω, A, µ0), with sample space Ω, σ-Algebra A,
and prior measure µ0, we consider the unknown u to be a random field on D × Ω with
X = L2(D), the Hilbert space of square-integrable functions, and µ0(X) = 1. Let y ∈ Y
denote the observational data, where Y = Rm for some m ∈ N.

Let V be another function space, and define the forward response map as B : X → V ,
which maps the uncertain input u ∈ X to a response. Furthermore, the bounded linear
observational functional is given by H : V → Y , which maps the response to the space
of observational data. Then the uncertainty-to-observation map is the composition of the
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forward model with its projection onto the observed data and is denoted as G := H ◦ B :
X → Y .

In practice, it is not assumed that the unknown parameter is mapped directly to the
observations; rather, the observational data have been corrupted by additive Gaussian ob-
servational noise, such that

(1) y = G(u) + η, η ∼ N (0,Γη),

where η is zero-mean with covariance Γη = σ2
ηIm, for some σ2

η > 0. More details on the
operator G of this work will be discussed in Section 3. Given (1), the likelihood is defined as

(2) πylike := exp
[
−Φ(u; y)

]
= exp

[
− 1

2σ2
η

‖y − G(u)‖2],
where Φ(u; y) := − 1

2σ2
η
‖y − G(u)‖2 denotes the log-likelihood.

The infinite-dimensional version Bayes’ formula establishes the relation between the pos-
terior measure µy and the prior measure µ0 of the parameter [45], and is given by

(3)
dµy

dµ0

(u) =
1

Z
πylike,

which means that for any measurable function ψ, we have

(4)

∫
X

ψ(u) dµy(u) =
1

Z

∫
X

ψ(u)πylike dµ0(u).

The normalization constant Z above is given by

(5) Z :=

∫
X

exp
[
−Φ(· ; y)

]
dµ0(u).

2.1. Computation of Posterior Expectations. We seek the expected value of a QoI,
Q(u) = Q[B(u)], Q : V → R, under the posterior distribution µy. Typically, we do not have
a closed form expression for the posterior distribution µy, since the normalizing constant Z
is not known explicitly. However, using Bayes’ formula (or (4) for ψ = Q), it can be shown
that the posterior QoI expectation may be expressed as the ratio of two prior expectations:

(6) Eµy [Q(u)] =
Eµ0
[
Q · πylike

]
Eµ0
[
πylike

] :=
R

Z
,

As we are able to sample from the prior, the form of (6) provides a method to compute
the posterior expectation; see equation (2.5) of [43], which utilizes a derivation of equation
(6.24) in [45].

For problems where the discrete approximation of the unknown u is high-dimensional, as
in this work, approximating R and Z must be done with care. In particular, we consider
random sampling strategies, i.e., Monte Carlo and its variants as in [43], to approximate
the prior expectations in (6). The details of MC and MLMC sampling methods will be
presented in Section 5. Now that we have defined posterior QoI estimates with respect to
the prior distribution and have motivated sample-based strategies, we move to discuss the
model problem with uncertain input coefficient.
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3. Forward Model Formulation with Uncertain Permeability

The application focus of this work is Darcy’s law to model subsurface flow where the
permeability k(x, ω) is subject to uncertainty and is modeled as a lognormal random field.
For a fixed ω ∈ Ω, velocity q and pressure p may be determined by solving

(7)
1

k(x,ω)
q(x, ω) +∇p = f in D

∇ · q = 0 in D,

with Dirichlet boundary condition p = pD on ΓD, enforced by the right-hand side f , and
Neumann boundary condition q · n = 0 on ΓN , where ΓD and ΓN are non-overlapping
partitions of ∂D. The scalar QoI Q will depend on q and the likelihood will depend on p;
however, we postpone defining Q and the likelihood until Section 6.

3.1. Discrete Spaces and Associated Darcy Solver. Define the spaces W = L2(D)
with inner product (u, v) =

∫
D
uvdx for all u, v ∈ W and R = H(div;D) := {q ∈

[L2(D)]d| div q ∈ L2(D), q · n = 0 on ∂D} with inner product (q, s) =
∫
D
q · sdx for

all q, s ∈ R.
For the discretization scheme, define the discrete space Rh ⊂ R to be the lowest order

Raviart-Thomas element, and Wh ⊂ W to be the space of piecewise constants, both on an
unstructured triangulation Th of D with mesh size h. For a single discrete realization of
k, denoted kh, solutions of the forward problem (qh, ph) ∈ Rh ×Wh are calculated via the
discretized weak formulation

(8)
(k−1
h qh, sh)− (div sh, ph) = (fh, sh) ∀sh ∈ Rh,

(div qh, vh) = 0 ∀vh ∈ Wh,

subject to the corresponding boundary conditions of (7). Here we consider the mixed for-
mulation due to the availability of scalable and robust solvers. More importantly, it allows
for direct approximation of the velocity needed for the QoI, and piecewise constant pressure
needed in the likelihood calculation.

The reader is directed to [19] for discretization error analysis of a general mixed formulation
of Darcy’s equations using the Raviart-Thomas finite elements, when kh is a lognormal
random field. Here we do not discuss convergence theory, but rather focus on the numerical
results of Section 6 to illustrate convergence.

The associated linear system for (8) is constructed as follows. Define M(k)h to be the
mass matrix associated with the inner product (k−1

h qh, sh) for a fixed kh and Bh to be the
matrix associated with the bilinear form (div qh, vh). Then solving (8) amounts to solving
the linear system

(9)

[
M(k)h BT

h

Bh 0

] [
qh
ph

]
=

[
fh
0

]
.

In this work, (9) is solved by a block Jacobi-type preconditioned MINRES, where the system
is preconditioned with

(10) B1 =

[
M̃h 0

0 S̃h

]
,

where S̃h = BhD
−1
M BT

h and DM is the diagonal of M(k)h. In our numerical experiments, the

action of applying the inverse of M̃h is 3 Gauss-Seidel iterations, and applying the inverse of
S̃h is approximated with a single algebraic multigrid V-cycle; specifically, we use the scalable
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BoomerAMG [23] from hypre [2] constructed on the basis of S̃h. We note that S̃h (and the
AMG preconditioner) must be recomputed for each new realization of kh.

In practice, each forward simulation requires a new realization of the permeability k(x, ω) =
k∗ + exp(u(x, ω)), which is formed from independent realizations of the Gaussian random
field u(x, ω). Common approaches to forming the field u(x, ω) include using a truncated
KLE [16], circulant embedding [20], as well as SPDE approach [35]. As discussed in Section
1, a näıve KLE or circulant embedding approach is not directly applicable for large-scale
problems where the problems are posed on unstructured meshes. Note, however, there are
KLE formulations that may work in this environment, e.g., [6], and comparisons with SPDE
are a consideration for future work. In this work we have chosen to form the Gaussian ran-
dom fields via SPDE due to its efficient scalability, as well as the availability of tools to form
these realizations on unstructured meshes (see, e.g., [3, 4]).

4. Prior Random Field Sampling via Stochastic Partial Differential
Equation

Following work in [35], a stochastic PDE method may be employed to form Gaussian
random field realizations based on the exponential covariance function:

(11) cov(x,y) = σ2 exp

(
−‖x− y‖

λ

)
,

with correlation length λ. The associated stochastic PDE from which realizations of the
random field u are formed is given by

(12) (κ2 −∆)u(x, ω) = gW(x, ω), x ∈ D, κ > 0,

where κ = 1/λ, W(x, ω) is a realization of the standard Gaussian white noise with unit
variance, and g is a scaling factor used to impose unit variance on u. Solutions to (12) form
realizations of a continuous Gaussian random field. In practice, finite dimensional, discrete
approximations of u are formed via numerical methods.

4.1. Mixed Finite Element Approach to Form Realizations. Recall the discrete space
Rh ⊂ R is the lowest order Raviart-Thomas element, and Wh ⊂ W is the space of piecewise
constants, both on an unstructured triangulation Th of D with mesh size h. We seek solutions
(ρh, uh) ∈ Rh ×Wh from the system

(13)
(ρh, sh) + (div sh, uh) = 0 ∀sh ∈ Rh

(divρh, vh)− κ2 (uh, vh) = −g (W , vh) ∀vh ∈ Wh.

with essential boundary conditions ρh · n = 0. Similar to the discrete form of Darcy’s
equations in (8), we employ a mixed system to solve (12), as it allows for element-by-element
discontinuous (e.g., piecewise constant) approximate solutions for uh which is of our main
interest.

Similar to Section 3.1 let Mh be the mass matrix associated with inner product (ρh, sh), Λh

with the inner product (uh, vh) which is diagonal (due to the piecewise discontinuity of the
spaces), and Bh with the bilinear form (div sh, uh). A realization of the righthand side of (13)
may be calculated, as in [35], using the fact that E[(W , vi)] = 0 and cov((W , vi), (W , vj)) =
(vi, vj) for vi, vj ∈ W . For piecewise constant vh ∈ Wh it follows that a realization of (W , vh)

is given as Λ
1/2
h ξh(ω), with ξh(ω) ∼ N (0, I).
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For a fixed ω ∈ Ω, solving (13) amounts to solving the linear system given as

(14) AhUh =

[
Mh BT

h

Bh −κ2Λh

] [
ρh
uh

]
=

[
0

−gΛ
1/2
h ξh(ω)

]
= Fh(ω).

Our framework allows for different preconditioners to solve this system [4]; and within this
framework, we utilize the hybridization AMG method of [34, 10], which allows for a scalable
parallelizable implementation. In particular, an equivalent problem is constructed with a
modified (broken) lowest order Raviart-Thomas space, such that the basis functions of the
modified space have support within only a single element; this results in a highly paralleliz-
able system, where Mh and Bh become decoupled blocks in the modified space, leading to
block diagonal matrices. In practice, the setup of the hybridization AMG solver is computed

only once, and can be reapplied to different realizations of the right-hand side gΛ
1/2
h ξh(ω).

In our experiments the resulting hybridization linear system is solved with the conjugate
gradient method preconditioned with hypre’s BoomerAMG [23].

Remark 1 (Artificial Boundary Effects). As discussed in [35] numerical solutions to (12)
suffer from the variance being artificially inflated along the boundary. A standard remedy is
finding solutions on an extended domain; however, this is not straightforward when the mesh
is unstructured, as we will consider in this work. To mitigate this issue, solutions are formed
by applying the mesh embedding technique from [40]. In [40], the domain D is embedded
in a larger mesh D̄ in a manner that does not require vertices of the unstructured meshes
of either domain to match. More precisely, solutions to (13) are solved on the domain D̄,
then projected onto the mesh of interest D; as solutions uh are in Wh, the space consisting
of piecewise constants, the transfer is scalable and the meshes can be arbitrarily distributed
among processors.

Now that we have discussed the implementation for a single level of mesh refinement, we
discuss the methodology in a multilevel setting.

4.2. Multilevel Realizations. We now consider a sequence of finite element spaces R` and
W` on an unstructured triangulation T` of size h`, for ` = 0, 1, . . . L. We assume that the
hierarchy of unstructured meshes has been generated by recursively agglomerating finer level
elements. Here different values of ` refer to different levels of mesh widths (characteristic
diameter of agglomerated elements) with h0 < h1 < · · · < hL, e.g., h0 corresponds to the level
with finest mesh, and hL to that with the coarsest mesh. The sequence of finite element
spaces, associated with the (agglomerated) mesh, is constructed using methodology from
element-agglomerated AMG (AMGe) methods, so that we are able to construct operator-
dependent coarse spaces for H(div) problems with guaranteed approximation properties on
general, unstructured grids; see [31, 32, 41, 29] for technical details.

Consider the linear system in (14) where a subscript ` indicates mesh size h`. For a single
level realization of the Gaussian random field, it is necessary to only solve A`U` = F`(ω

(i)) for
a fixed ω(i). To obtain a multilevel realization, as is needed for MLMC, furthermore requires
the corresponding coarse solution to A`+1U`+1 = F`+1(ω(i)). This is done following the work
of [39]. Define the interpolation operators Pu : W`+1 → W` and Pρ : R`+1 → R` constructed
using techniques from AMGe [31, 32, 41]. First, a level ` realization of ξ`(ω

(i)) ∼ N (0, I) is
generated, and second the coarse system is solved

(15) A`+1U`+1 =

[
0

−gP T
u Λ

1/2
` ξ`(ω

(i))

]
,
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using the hybridization and AMG technique as discussed in Section 4.1. Third, to the solve
for corresponding fine level U`, the interpolated coarse solution,[

Pρ 0
0 Pu

]
U`+1,

is applied as an initial guess fine level ` solver. Work showing that both level ` and level
`+ 1 solutions produce Gaussian random fields is found in Proposition 3.1 of [39].

5. Monte Carlo and Multilevel Monte Carlo for Posterior QoI Mean
Estimation

In this section we briefly review key concepts of Monte Carlo and multilevel Monte Carlo
methods [22, 17, 7, 46] for estimating the posterior mean Eµy [Q(u)] = R/Z from (6).

Since the forward problem is a PDE, the quantities Q(u) and Φ(u; y) cannot be computed
exactly, thus we consider the numerical approximations Qh(uh) = Qh[Bh(uh)] and

(16) Φh(uh; y) =
1

2σ2
η

‖y −Hh(Bh(uh))‖2

where the forward problem is discretized on the triangulation Th. Subsequently, we consider
the prior expectations of the numerical approximations:

(17) Rh = Eµ0
[
Qh · exp[−Φh]

]
and Zh = Eµ0

[
exp[−Φh]

]
.

We can now define the MC and MLMC estimators for Rh and Zh. For the purpose of
clarity, we review MC and MLMC estimators for the expected value for some functional
fh(uh) : Xh → R, where the formulation and notation will directly apply to both Rh and
Zh.

5.1. Standard Monte Carlo methods. In standard Monte Carlo, the expectation Eµ0 [fh]
is estimated via a sample mean. Given N independently identically distributed samples, uh

(i)

for i = 1, . . . , N , according to the prior distribution, the MC estimate of Eµ0 [fh] is defined
as

(18) f̂MC,µ0
h,N =

1

N

N∑
i=1

fh(uh
(i)).

It can be shown that the mean square error (MSE) of the estimator is

(19) E
[(
f̂MC,µ0
h,N − Eµ0 [f ]

)2
]

=
Vµ0 [fh]

N
+ (Eµ0 [f − fh])

2 ,

where Vµ0 [·] is the variance. In (19), the first term is the sampling error and the second term
is related to the discretization error. For a desired MSE tolerance of ε2, one often requires
Vµ0 [fh]/N ≤ ε2/2, and thus the total number of samples N scales as 2Vµ0 [fh]/ε

2. For large
Vµ0 [fh], a larger number of samples and thus more forward PDE solves are required for
a desired MSE tolerance, which can be cost prohibitive. Alternatively, more cost efficient
approaches may be considered, e.g., variance reduction methods, where by reducing the
variance of fh, fewer forward simulations are required, thus reducing the overall cost. To
this end, multilevel Monte Carlo (MLMC) is considered.
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5.2. Multilevel Monte Carlo methods. In MLMC, the expectation Eµ0 [fh] is estimated
using a hierarchy of spatial discretizations as introduced in Section 4.2, called levels, wherein
most of the computational burden is placed on forward PDE solves using coarser levels.
Assume we have a sequence of approximations fL, . . . , f1 of the QoI fh, where f` := fh` for
` := L, . . . , 1 denotes the QoI obtained from the level ` solver and fh := f0, then we have

(20) Eµ0 [fh] = Eµ0 [YL] +
L−1∑
`=0

Eµ0 [Y`],

where Y` = f` − f`+1 for ` = 0, . . . , L− 1, and YL = fL. Instead of applying MC to directly
estimate Eµ0 [fh], a MC estimator is employed to estimate to each expectation in (20) to
obtain the estimator for Y`:

(21) Ŷ`,N` =
1

N`

N∑̀
i=1

(
f`(u`

(i))− f`+1(u`+1
(i))
)
,

where N` is the number of samples for level `. Then it follows that the MLMC estimator of
Eµ0 [fh] is

(22) f̂ML,µ0
h =

L∑
`=0

Ŷ`,N` .

It can be shown that the MSE of the MLMC estimator is given by,

(23) E
[(
f̂ML,µ0
h − Eµ0 [f ]

)2
]

=
L∑
`=0

Vµ0 [Y`]

N`

+ (Eµ0 [f − fh])
2 .

The cost reduction lies in the sampling error of MLMC; as compared to the sampling error
of MC (in (19)), the MLMC variance associated with the finest level QoI, level ` = 0, is
Vµ0 [Y0], i.e., the variance of the difference between f0 and f1. As h → 0, Y` → 0, and the
assumption (which can be theoretically or numerically verified) is that Vµ0 [Y`] approaches
zero, resulting in fewer required samples N` on finer levels. Based on work in [17] it can
be shown that the optimal number of samples to obtain a desired sampling error of ε2/2 is
given by

(24) N` &
2

ε2

[
L∑
k=0

√
Vµ0 [Yk]Ck

]√
Vµ0 [Y`]

C`
,

where C` is the cost per sample of Y`. In practice, the variance for each level correction Y`
must be estimated in order to calculate (24).

Estimating the discretization error in (23) requires more care. In particular, it is important
to verify that the finest level mesh size h(= h0) is small enough to obtain an accurate QoI.
To this end, we employ the MLMC theory for PDEs to verify a bound on the both terms of
the MSE; see, e.g., [7, 46]. Let M` be the spatial degrees of freedom (DOFs) for the mesh on
level ` (i.e., the number of unknowns in the linear solver). Briefly stated, Theorem 1 of [7]
states, that, for constants α, β, γ > 0 such that α ≥ 1

2
min(β, γ) and

(1) |Eµ0 [f` − f ]| .M−α
` ,

(2) Vµ0 [Y`] .M−β
` ,

(3) C` .Mγ
` ,
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there exists a level of mesh refinement h, and number of levels L + 1 with N` samples per
level, such that, for a given ε < e−1 it follows that,

E
[(
f̂ML,µ0
h − Eµ0 [f ]

)2
]
< ε2,

and

C(f̂ML,µ0
h ) .

 ε−2, for β > γ
ε−2(log ε)2, for β = γ
ε−2−(γ−β)/α, for β < γ,

where C(f̂ML,µ0
h ) is the total cost of performing MLMC to calculate f̂ML,µ0

h . More concisely,
given a value of ε, and values α, β, and γ, a specific sequence of levels exists that guarantees
(up to a constant) bounds on both the MSE and total cost of performing MLMC. For
comparison, the cost to perform standard MC will grow as ε−2−γ/α. In practice, the key is
to estimate values α, β, and γ, to determine whether or not a value of ε is suitable for a
particular sequence of levels.

5.3. MC and MLMC Ratio Estimators for Posterior QoI Mean Estimation. Using
MC and MLMC estimators of Rh and Zh (defined in (17)) as in (18) and (22), respectively,
we can define the following estimators for the ratio estimator in (6). Define the MC posterior
estimator to be

(25) Q̂MC,µy

h,N :=
R̂MC,µ0
h,N

ẐMC,µ0
h,N

,

and the MLMC posterior estimator to be

(26) Q̂ML,µy

h :=
R̂ML,µ0
h

ẐML,µ0
h

.

Using R̂h and Ẑh to denote estimators – either MC estimator as defined in (18) or MLMC
estimator in (22) – of R and Z, respectively, a bound on the MSE of the posterior estimator
is provided in [43], where the authors show

(27) E

(R̂h

Ẑh
− R

Z

)2
 ≤ 2

Z2
max{1, ‖R̂h/Ẑh‖2

L∞}
(
E
[(
R̂h −R]

)2
]

+ E
[(
Ẑh − Z]

)2
])

.

For bounded R̂h/Ẑh and Z away from zero, this indicates that the MSE of the posterior

mean scales as the sum of the MSE of R̂h and the MSE of Ẑh; in particular, MC and MLMC

theory can be directly applied to the individual errors E[(R − R̂h)
2] and E[(Z − Ẑh)

2] to
estimate the MSE of the posterior estimator.

Remark 2 (Scaling of Variance). In practice, the sample variances of R and Z are quite
small, and thus we employ ideas similar to [47] with regard to the sampling error. That is,
we instead use the squared coefficient of variation estimate to indicate the number of needed
samples, where the squared coefficient of variation of R is defined as

δ2 :=
Vµ0 [R]

Eµ0 [R]2
,
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and similarly for Z. For the numerical results, estimates of the variance are in fact estimates
of the squared coefficient of variation, which are then used to estimate the number of required
samples per level N`.

6. Numerical Results for Posterior QoI Mean Estimation

In this section we discuss the numerical performance of the ratio estimator when using
MC and MLMC on the Darcy model problem with the SPDE sampler to generate Gaussian
random field realizations. To this end we consider two test cases; first, we compare MC and
MLMC versions of the ratio estimator on the unit cube to confirm MLMC outperforms MC,
and second, we apply the ratio estimator with MLMC to the Egg model, as in [27], to test
the estimator in a large-scale setting.

In both tests, we seek the posterior statistical moments, e.g., Eµy [Q(u)] (as in (6)), of the
effective permeability along the outflow boundary Γout, where the QoI is defined as

(28) Q(u) =
1

|Γout|

∫
Γout

q · n dS,

with q a solution of (7). To form the ratio estimate, we utilize independent simulations
of R` and Z`; both which require us to simulate the forward model to obtain velocity and
pressure solutions (q`, p`). A sample of Z` requires the calculation of the pressure p` to
estimate Φ` (see (16)), where ‖y −H`(B`(u`))‖ is the error between simulated and observed
local pressure measurements. A sample of R` requires, in addition, the calculation of Q` (a
discrete estimation of (28)). Algorithm 1 outlines the different steps taken to form scalable
samples of R` or Z`.

Algorithm 1: Algorithm for simulating R` or Z`

i. Sample ξ`(ω) ∼ N (0, I)
ii. Form Gaussian random field realization u` via (14)

iii. Solve Darcy’s equations to obtain (q`,p`) via (9), with k` = k∗ + exp(u`)
iv. Calculate Φ`(u`; y) via (16)
v. If estimating R`, calculate Q` via (28); otherwise skip

vi. Form a realization of R` or Z` via (17)

Numerical simulations – of both the SPDE and forward Darcy solvers – were performed
using tools developed in ParELAG [3], a parallel C++ library for performing numerical up-
scaling of finite element discretizations using specialized element-based agglomeration tech-
niques. ParELAG makes use of several scalable multilevel solvers and preconditioners from
the hypre library. In particular for our results, BoomerAMG is used in both the solvers for
the SPDE and forward Darcy problems. ParELAGMC [4], a parallel element agglomera-
tion MLMC library, was applied to generate all MLMC results, with images generated with
GLVis [1]. All timing results were executed on the Quartz cluster at Lawrence Livermore
National Laboratory, consisting of 2,688 nodes where each node has two 18-core Intel Xeon
E5-2695 processors. For the Egg model results, we use 36 MPI processes per node.

6.1. 3D Mixed Darcy Equations: Unit cube. The first test case applies the ratio es-
timator to the Darcy model problem on a unit cube domain, where we consider h0 = 1/32
to be the finest mesh size. For MLMC we consider three coarser levels with mesh sizes
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h1 = 1/16, h2 = 1/8, and h3 = 1/4 – all with tetrahedral elements. Furthermore, to avoid
inverse crimes (see [28]), reference observational data are generated via (1), by performing
the forward solve on a highly refined mesh of size hobs = 1/64, and adding observational
noise with variance σ2

η = 0.1. We note, initial results consider m = 9 uniformly spaced data
points measuring local average pressure.

Algorithm 1 outlines the steps taken to generate samples of R` and Z` on each level. In step
(ii), a realization of u` is formed with correlation length λ = 0.3, where the corresponding
coarser realization is obtained via (14) when utilizing the same ξ`(ω) from step (i). Next,
the lognormal random field k on each level is calculated as k` = k∗ +exp(u`) with k∗ = 0.001
to enforce uniform ellipticity. Figure 1 displays a single realization of k` on the four different
levels. For step (iii) of Algorithm 1, the Darcy solver is completed with boundary conditions

0.0925

0.3899

1.643

6.927

29.2

(a) ` = 0

0.0925

0.3899

1.643

6.927

29.2

(b) ` = 1

0.0925

0.3899

1.643

6.927

29.2

(c) ` = 2

0.0925

0.3899

1.643

6.927

29.2

(d) ` = 3

Figure 1. Corresponding realizations of the lognormal random field k on
the four levels of refinement: (A) finest level ` = 0, (B) level ` = 1, (C) level
` = 2, and (D) coarsest level ` = 3.
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of 
−p = 1 in Γin := (0, 1)× (0, 1)× {0},
−p = 0 in Γout := (0, 1)× (0, 1)× {1},
q · n = 0 in ∂D\{Γin ∪ Γout}.

To show that MLMC may be applied to estimate the moments of R and Z, we first consider
the decay of mean and variance estimates of R` − R`+1 and Z` − Z`+1 compared to single
level estimates for R` and Z`. Figure 2 (A) provides the mean estimates as a function of the
number of unknowns in the linear solver. The decay of the mean helps indicate convergence
in the discretization error (see Section 5.2 for theoretical error discussion). To estimate the
discretization error of R and Z MLMC estimators we must estimate the value of α. In
particular, we estimate α ≈ 0.3 from the slopes of R` − R`+1 and Z` − Z`+1. Figure 2 (B)
provides the variance estimates as a function of the number of unknowns. The decay in
variance for R`−R`+1 and Z`−Z`+1 indicates that fewer samples will be needed on the finer
levels, as per the definition of N` (see (24)). The variance for both these correction terms
decays with a slope of β ≈ 0.6. These values of α and β correspond to the MLMC error and
cost bounds discussed in Section 5, and will be used later in this section as a comparison
with the computational cost result.
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Figure 2. (A) Absolute value of sample mean and (B) sample variance
values for R` and Z` estimates in a single level, and R` − R`+1 and Z` − Z`+1

in a multilevel setting. The x-axis provides the number of unknowns in the
linear solver. All data points determined from N = 128 samples on each level.

While the previous figure indicates that MLMC may be applied to the estimates of R and
Z, the same does not necessarily hold for the QoI Q. Since Q is the ratio of the R and Z
estimates, it must be confirmed that the MSE of Q scales according to the MSE of both R
and Z estimates. To do this we approximate the discretization error and sampling error of
R, Z, and Q. Figure 3 displays the decay of R` −R`+1, Z` − Z`+1, and Q̂` − Q̂`+1 estimates
using the average of 500 samples. The decay lines indicate that as the discretization error
of Q decays with the error decay of R and Z.

For Figures 4 and 5, we perform only a two-level MLMC, with the coarsest two levels;
that is, h2 = 1/8 is the fine level mesh size, and h3 = 1/4 is the coarse level mesh size.
Figure 4 provides the estimated sampling error decay, as a function of sample size (see (19)
for MC and (23) for MLMC sampling error definitions). In particular, Figure 4 (A) displays
this sampling error when using N MC samples. For MLMC, the number of samples is
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Figure 3. Decay of the discretization error for Q`, R`, and Z` for N = 500
samples on each level. The discretization error convergence rate of the ratio
estimator Q` is approximately equal to the convergence rates of individual
prior estimators R` and Z`.

selected to match the equivalent cost of N MC samples. For this comparison, we select the
number of samples on each level, Ñ`, such that the MSE is optimized constraint to the cost
CMLMC = NC0, resulting in

(29) Ñ` =
NC0∑L

k=0

√
VkCk

√
V`
C`
,

on each level. Figure 4 (B) provides the sampling error of a 2-level MLMC as a function of
N , so that it is comparable to MC.
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Figure 4. (A) Decay of the MC sampling error (sample average of error for
10 runs). (B) Decay of the MLMC sampling error (sample average of error for
10 runs).

The next set of results compares the effect of noise and number of observations on the
sampling error for ratio estimates of MC and MLMC, again treating h2 as the fine level mesh
size. Figure 5 (A) displays the estimated sampling error as a function of the observation
noise variance σ2

η (see (1)) for m = 9 observations. These estimates are calculated by
performing 10 runs of MC and MLMC and averaging the associated MSE estimates. The
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sampling error improves with increased noise parameter. An important point to highlight is
that for small values of the noise parameter, this method does not perform as well, as the
probability density is compressed over a region that is difficult to sample from accurately.
On the right, Figure 5 (B) provides the estimated sampling error as a function of the number
of observations calculated in (1). For values m < 100, MC and MLMC sampling errors are
approximately less than 0.01, while a larger number of observations results in sampling errors
greater than 0.4.
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Figure 5. (A) Comparison of MC and MLMC sampling errors, with fixed
N = 1048 and m = 9, as a function of noise parameter (sample average of
error for 10 runs). (B) Comparison of MC and MLMC sampling errors, with
fixed N = 1048 and σ2

η = 0.1, as a function of noise parameter (sample average
of error for 10 runs)

The final result in Figure 6 compares the total wall time of MC and MLMC for various
values of ε. Note that the calculated cost is determined from the R and Z MLMC and MC
estimators to achieve specified MSE errors. As previously demonstrated, the sampling error
and discretization error of Q scales similarly to that of R and Z estimators. As such, the
cost scaling of the ratio estimator will perform similarly to the results in Figure 6.

In Figure 6 each MC and MLMC estimation performed, i.e., each data point, was com-
pleted on 4 MPI processors on Quartz. For ε = 0.25, MLMC requires one level (to meet the
discretization error estimate), thus MC and MLMC have the same costs. For each smaller
value of ε, an additional level in incorporated into MLMC so that the smallest value ε is
associated with the 4-level MLMC. Furthermore, as the value of ε decreases, the cost of
MLMC is clearly better than the cost of performing MC. For comparison, we also plot the
theoretical cost increase of MLMC and MC as a function of ε (as discussed in Section 5).
These values come from the β < γ scenario, where the MLMC cost increases as ε−2−(γ−β)/α.
Setting α = 0.3, β = 0.6, and γ = 1 – as estimated in this numerical results section – we
estimate that the cost of MLMC grows as ε−10/3. For single-level MC, the cost grows as
ε−2−γ/α = ε−16/3.

These results demonstrate the cost improvement of MLMC compared to MC. In particular,
MLMC has improved wall time scaling for decreased values of ε. Next, we investigate the
scalability of this MLMC approach for increased problem size.
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Figure 6. Computational cost of performing MC vs MLMC for various
values of the root MSE accuracy ε. Both MC and MLMC runs completed on
4 processors.

6.2. Cost scaling with the Egg Model. In order to show that this approach is amenable
to large-scale settings, we consider the same forward problem, but within a larger, irregular
domain, as described by the ‘Egg model’ [27]. We consider the performance of computing
the MLMC ratio estimator using a weak scaling perspective, i.e., increasing the fine level
problem size proportionally to the processor count, for 3 different MLMC computations.

The Egg model is a 3D synthetic reservoir model containing an ensemble of synthetic
realizations that contain channels of high permeability to represent subsurface river patterns.
With regards to the discretization, the irregular Egg domain is contained by a 480 m ×
480 m× 28 m bounding box. For the SPDE solver (step (ii) of Algorithm 1), the Egg model
domain is embedded within a 512 m × 512 m × 44 m domain (see Remark 1). Figure 7
displays both the original Egg model mesh and enlarged mesh (in which it is embedded) for
the coarsest level, both with hexahedral elements of size 8 m× 8 m× 4 m. For finer levels,
the mesh of Figure 7 is uniformly refined by a factor of two in each direction.

Figure 7. (A) Original Egg model mesh containing 18, 553 elements. (B)
Enlarged mesh, in which the Egg model mesh is embedded, extends two el-
ements in each direction beyond the Egg model mesh bounding box. Both
meshes displayed correspond to the coarsest level.



ESTIMATING POSTERIOR QOI EXPECTATIONS IN A MULTILEVEL SCALABLE FRAMEWORK 17

To generate realizations of R` and Z`, we following Algorithm 1. In step (ii), realizations
of u` are formed with correlation length λ = 10 m. Dissimilar to the unit cube example,
after calculating u` in step (ii), the permeability field is formed using data from [27]. That
is, we employ the base permeability field kdata, with its inverse displayed in Figure 8 (A),
and define the permeability as k` = k∗ + kdata exp(u`) with k∗ = 0, so that the synthetic
permeability data is the mean of the lognormal field. It is important to note, that with
this construction of k, uniform ellipticity is no longer enforced. Figure 8 (B)-(D) displays
realizations of exp(u`) on three different levels. These images represent solutions calculated
on the coarsest mesh, and well as corresponding solutions on meshes with one and two
additional levels of refinement. For step (iii) of Algorithm 1, the Darcy solver is completed

(a) Inverse permeability data k−1
data (b) ` = 0

(c) ` = 1 (d) ` = 2

Figure 8. (A) Inverse of permeability field 18 from [27]. (B)-(D) A single
realization of the coefficient k−1

` on levels ` = 0, 1, and 2 on the smallest
problem with 36 processors.

with boundary conditions of
−p = 1 on Γin := {0} × (0, 480)× (0, 28),

−p = 0 on Γout := (0, 480)× {0} × (0, 28),

q · n = 0 on ∂D\{Γin ∪ Γout}.
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The reference observational data – localized average pressure – are extracted about m = 12
locations in the domain at z = 12 and (x, y) coordinates provided in Table 1. We consider
observational noise with σ2

η = 1.0.

Table 1. Observational Data Coordinates

m Coordinates

12 (40, 399), (240, 432), (16, 280), (216, 232), (400, 280), (64, 72),
(256, 16), (399, 42), (128, 344), (280, 320), (184, 128), (344, 144)

The first set of tests performed mimics those of standard MLMC; that is, we investigate
the decay of the mean and variance of R` − R`+1 and Z` − Z`+1. This is done using a
discretization with 7.6e+07 elements (corresponding to the largest problem in the weak
scaling results below), with five levels using 2, 304 MPI processors. Figure 9 provides these
results. The slopes indicate we have similar results to the cube model, in particular, we have
values α ≈ 0.3 and β ≈ 0.6. These results aid in the selection of ε for the remaining results.
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Figure 9. (A) Absolute value of sample mean and (B) sample variance values
for R` and Z` estimates in a single level, and R` − R`+1 and Z` − Z`+1 in a
multilevel setting. The x-axis provides the number of unknowns per processor.

For the scaling analysis, we consider the performance of adaptive MLMC for computing
the ratio estimator with two smaller problem sizes (in addition to the five level formulation
above), with the details provided in Table 2. For the each problem size, starting with the
smallest, the number of MPI processors (NP) is increased by a factor of 8 to maintain the
same number of spatial degrees of freedom per processor, approximately 1.39e+05 DOFs, on
the fine level. Then the target MSE value ε2 is reduced by a factor of 4, for each increase in
problem size, to account for the more accurate spatial discretization. The smallest problem,
with NP = 36, uses a three-level MLMC estimator for R and Z. As the problem size is
increased, the coarse level is held fixed, so the number of levels increases as well. The largest
problem size utilizes all five levels in the MLMC estimators. We note, the number of samples
for each level (see (24)) is the combined total for R and Z multilevel estimators.
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Table 2. MLMC Problem Sizes

NP Global DOFs (` = 0) Target MSE Wall Time (s) N0 N1 N2 N3 N4

36 4.8063e+06 4.00e-05 869 35 284 7783
288 3.8223e+07 1.00e-05 2,817 61 470 1746 28199
2304 3.0488e+08 2.50e-06 16,824 111 813 2764 6892 102931

The first scaling results we consider are provided in Table 3 and Figure 10 (A). Table 3
provides the average computational time to generate a sample (averaged over the combined
cost for R and Z, as the costs are comparable) on each level for the three different number
of processors used in the experiments. We note this is both the cost to generate the random
field input and to solve Darcy’s equations. For ` = 0, 1, 2, 3, each column provides individual
weak scaling results, since each processor has approximately the same number of DOFs. As
expected, level 0 performs the best, with efficiency decreasing to 90% on the middle problem
(np=288), and 58% (np=2304) on the largest problem, relative to the smallest problem. As
the levels are coarsened, the efficiency decreases, also to be expected; for example, for level 2
the efficiency decreases from 33% to 11%. For the coarsest problem on each row, the timings
provide strong scaling results. Note that problems at a given level that have about the
same number of global DOFs are distributed differently (as it is, for example, at the coarsest
level in our tests). The different distribution implies different communication patterns which
affects the performance at the coarse levels. In particular, the coarsest problem in the third
row is about two times slower than the same problem in the second and first rows. This
decreased scaling is expected for the coarser levels as the number of processors increases -
a fact well known in strong scaling studies. As we are using BoomerAMG from the hypre
library within the solve of both linear systems (sampler and forward problem), we are limited
by the performance of the solver and AMG’s performance degradation on coarse grids. For
more detailed study on the increased communication complexity at coarse levels of the AMG
solver we use, BoomerAMG, we refer to [15]. However, the decreased parallel efficiency at
coarse levels does not substantially affect the overall parallel performance of the simulation.
The latter can be improved by either redistributing the data on coarse levels by using less
processors and hence improve the communication pattern, and/or incorporate parallelism in
the sampling at these levels (cf. [13]).

Figure 10 (A) displays the average computational time per sample (averaged over the
combined cost for R and Z) compared to the number of global unknowns in the forward
problem. For optimal scaling, this cost will grow linearly, and be maintained as the number
of processors are increased. On the finest levels, for each NP = 36, 288, and 2304, these results
display the desired scaling property; however, on the coarser levels scaling deteriorates due
to the reason explained above.

With regards to the adaptive MLMC results, Figure 10 (B) provides the number of samples
N` (for combined R and Z) for each level. For a fixed number of processors, the number of
samples increases for larger `, that is, a larger number of samples are needed on the coarser
levels. As the number of processors increases along with increased problem sizes, the number
of samples needed across all levels increases. This is because these larger problems have a
smaller target ε2, and thus will need more samples to achieve the associated target sampling
error.
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Table 3. Average wall time (s) per simulation, separated into the three prob-
lem sizes (NP), on each level. Levels ` = 0, 1, 2, 3 provide weak scaling results,
where each column maintains the same number of DOFs per processor.

NP ` = 0 ` = 1 ` = 2 ` = 3 ` = 4

36 7.95 0.501 0.0576
288 8.77 0.752 0.174 0.0576
2304 13.5 1.43 0.493 0.289 0.105
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Figure 10. (A) Average wall time per forward simulation on each level,
for each of the three problem sizes. (B) Total number of simulations N` (for
combined R and Z) on each level.

The final results we consider correspond to adaptive MLMC scaling for all three problems.
These results take into account total wall time to run all simulations required for the MLMC
estimators. Figure 11 (A) displays the total wall time (in seconds) to perform MLMC on each
problem size, in comparison to the ε-adjusted perfect scaling. Here the ε-adjusted cost growth
takes into account that as we increase the problem size, we are also decreasing ε; as such, the
number of samples on each level (see (24)) and thus the total cost increases accordingly (in
contrast to traditional weak scaling results). While this indicates reasonable scaling, Figure
11 (B) breaks down this cost into the total number of core-hours spent on each level, for
each problem size. This result indicates that the work is balanced well across most levels.
The finer levels (those with larger number of unknowns in these results) have consistently
good scaling performance. On the coarsest level, however, this is not that case. We observe
degraded scaling, where more time is spent generating coarse level samples relative to the
finer levels.

In our implementation the same number of processors are used for generating samples
on each level. This results in a decreased scaling efficiency on the coarser levels, due to an
increase in communication costs (relative to problem size) as well as the fact that more time
per solve is typically spent on the coarse level in algebraic multigrid (see e.g., [15]). An
option to improve on the coarse level scaling is to use level-dependent values of NP such that
we can achieve scaling similar to that of the finest level across all the levels, as is done in
[13].
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Figure 11. (A) Total wall time for the full MLMC algorithm across the
different problem sizes. Here perfect scaling takes the change in ε – and thus
the increase in number of samples on each level – into account. (B) Total
number of core-hours spent on each level, for each problem size.

7. Conclusions

In this work we present a scalable approach to perform nonlinear Bayesian inference for
large-scale 3D problems. The key components combine work from [43] and [39, 40] to form
a multilevel sampling approach where both the formation of the spatially varying random
field and forward PDE solver employ AMGe techniques to generate the hierarchy of coarse
discretization spaces with guaranteed approximation properties and rely on the scalability
of the utilized AMG solvers (such as the BoomerAMG in our case), and thereby scale as
the solvers do with increase in problem size. We apply this approach to two 3D examples, a
unit cube problem and the Egg model [27], to show the success of this approach. While each
simulation is scalable, the key result is that within the implementation of the MLMC ratio
estimate, the finest levels scale with increase in problem size, enabling us to perform Bayesian
inference on large-scale simulations with complex spatial domains. While the forward PDEs
solves were performed in parallel, further scheduling improvements can be made to increase
the coarse level efficiencies, as well as implementing the MC simulations in parallel (see, e.g.,
[13]).

From these results, we see that the errors incurred by performing this ratio estimate are
better in the parameter regime of large observational noise and small number of observations
(as discussed in [43]). For applications where there is smaller observational noise, an MCMC
approach will have improved accuracy. As the computational effort of MCMC is extremely
demanding for large-scale problems, ongoing research is focused on extending the multilevel
MCMC work in [11] to incorporate the already scalable features that are present in the
current work, that is, scalable sampling and scalable forward PDE solves. Of interest will
be to compare these two methods, given scalable generation of the spatially varying random
field.
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