
LLNL-JRNL-777449

Multilevel Graph Embedding

B. G. Quiring, P. S. Vassilevski

June 10, 2019

Numerical Linear Algebra with Applications

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

MULTILEVEL GRAPH EMBEDDING

BENJAMIN QUIRING† AND PANAYOT S. VASSILEVSKI

Abstract. The goal of the present paper is the design of embeddings of a general
sparse graph into a set of points in Rd for appropriate d ≥ 2. The embeddings that
we are looking at aim to keep vertices that are grouped in communities together and
keep the rest apart. To achieve this property, we utilize coarsening that respects
possible community structures of the given graph. We employ a hierarchical mul-
tilevel coarsening approach that identifies communities (strongly connected groups
of vertices) at every level. The multilevel strategy allows any given (presumably
expensive) graph embedding algorithm to be made into a more scalable (and faster)
algorithm. We demonstrate the presented approach on a number of given embed-
ding algorithms and large-scale graphs and achieve speed-up over the methods in a
recent paper.

1. Introduction

Data represented by graphs, possibly with edge weights representing relations be-
tween objects, generally have no geometric positions and hence no immediate numer-
ical coordinates can be associated with them. However, for many graph analysis tools
it is useful to place the vertices in a Euclidean space Rd for appropriate d so that one
is able to identify neighbors and measure the distance between nearby objects. In
particular, with coordinates (for d ≤ 3) one is able to visualize the graph. This paper
studies existing and proposes new algorithms for graph embedding with the ultimate
goal to make them applicable to large-scale graphs. The approach we explore is not
tied to a specific existing graph embedding algorithm, but aims to handle any existing
one that is potentially expensive or infeasible at large scale, by applying it on smaller
graphs and subgraphs. The smaller graphs are generated recursively in a multilevel
fashion utilizing an appropriate graph coarsening algorithm. The proposed multilevel
approach provides a general framework which is very powerful in the sense that it
can be feasible at large scale for many existing graph embedding algorithms.

The multilevel concept is standard tool for achieving scalability of algorithms on
sparse data. For example, the graph partitioning algorithm, METIS [1] exhibits this
nature. The coarsening, especially aggregation coarsening, is a common tool for many
algebraic multigrid (AMG) algorithms applied to sparse matrices (e.g., [4], [5], and
more recently, [6], [7] and many other references therein). The AMG algorithms
exploit not only the sparsity graph of the matrices but also the matrix entries.

Date: April 30, 2018–beginning; Today is May 1, 2020.
1991 Mathematics Subject Classification. 65F10, 65N20, 65N30.
Key words and phrases. graphs, multilevel algorithms, embeddings.
This work was performed under the auspices of the U.S. Department of Energy by Lawrence

Livermore National Laboratory under Contract DE-AC52-07NA27344.
1

2 BENJAMIN QUIRING† AND PANAYOT S. VASSILEVSKI

In our setting of graphs with possible edge weights, we chose to use multilevel coars-
ening algorithms that respect communities, such as a scalable variant of modularity
based pairwise matching coarsening [13].

We note though, that the multilevel approach we study does not depend on the
actual coarsening method used, so the details of the coarsening are only briefly men-
tioned. More details on coarsening subject to certain objectives can be found in [1]
(minimizing surface-to-volume ratio or edge cut) as well as [9] and [15], see also [13]
(maximizing the modularity functional).

We also note that a multilevel approach with the same goal (to be agnostic of
the coarsening and the given embedding algorithm) was recently utilized in [12]. The
difference between their method and ours is in the refinement of the embedding: when
an embedding for a coarse graph has been computed, to use it as a starting point for
embedding the next finer level graph the authors in [12] utilize a convolutional neural
network. To achieve scalability, they use its meta parameters trained at the coarsest
level.

The method we propose uses the clusters obtained at every level of our multilevel
coarsening to apply a given embedding algorithm locally to the clusters at every level,
maintaining the relative positioning of the clusters (which are vertices of the graph one
level coarser) and ensuring that the locally embedded clusters do not geometrically
overlap. This allows us to also achieve scalability while still obtaining high-quality
embeddings that approximate more expensive methods, with a speed-up over the
algorithms presented in [12]. In summary, using the clusters at each coarsening level
is a key ingredient of our multilevel approach.

The remainder of the present paper is structured as follows. In Section 2, we in-
troduce some basic definitions and provide a brief outline of our approach. In the
following Section 3, we describe the refinement procedure for using the coarser level
embedding to generate the one level finer embedding. The main section, Section 4, de-
scribes how any given embedding algorithm can be employed in our multilevel setting
to achieve scalability and lead to a faster, and generally more computationally feasible
algorithm. At the end we provide some conclusions and an outlook in Section 5.

2. Preliminaries and outline

2.1. Definitions. A graph G = (V,E) is a set of n vertices V = V (G) and a set
of m edges E = E(G), where each edge e ∈ E is an unordered pair of vertices
(i, j), i, j ∈ V . A partition π of a graph G is a partition of its vertex set, V . A
set A ∈ π of this partition is called an aggregate (syn. community, cluster, coarse
vertex). Script capital letters A, B, etc. denote aggregates while lowercase i, j, etc.
denote vertices in G, also referred to as fine level vertices.

Associated with G are values {aij}i,j∈V , where aij is the weight of the edge between
vertices i and j. If an edge e = (i, j) /∈ E does not exist in the graph its weight is
taken to be 0. The n × n matrix A = (aij) is referred to as the adjacency matrix of
G. We assume G is an undirected graph, making A a symmetric matrix.

Given a partition π one can form the coarse graph Gc = π(G): the coarse vertices
are the aggregates of π, and the coarse edges are the pairs (A,B) for which there

MULTILEVEL GRAPH EMBEDDING 3

exists i ∈ A and j ∈ B such that e = (i, j) ∈ E. We can define coarse edge weights

aAB =
∑
i∈A

∑
j∈B

aij.

Assuming the edge weights aij represent connectivity strength, the strength of con-
nectivity between two aggregates is similarly measured by aAB.

An embedding of a graph G = (V,E) into Rd is a function f : V → Rd. If G is
finite, such embeddings are bounded and so can be scaled to be within the unit sphere
or the unit cube in Rd. Given a finite graph G, we would like to find an embedding
of G in Rd for given d. This embedding should respect community structure; vertices
that are not in the same communities should be far apart and those in the same
community should be close. There are known algorithms which attempt to do this,
such as the physics-inspired ForceAtlas2 algorithm [8]. These methods can become
unwieldy for large graphs, however.

2.2. Outline of the multilevel strategy. To embed a large (sparse) graph G,
we propose the following process: first partition G in a multilevel fashion via some
method giving graphs G = G1, ..., Gc related via partitions {π`}c−1`=1 such that π`(G`) =

G`+1. This hierarchy has coarsening factor α if for each i, α ≈ |V (Gi+1)|
|V (Gi)| . Instead of

directly embedding G we seek first to embed the coarsest level Gc using a possibly
expensive, state-of-the-art, method. This initial embedding should place aggregates
that are not connected to each other far apart for best results. Once an embedding for
level ` has been obtained it is refined, creating an embedding for level `−1. Applying
such a procedure iteratively allows each of Gc−1, ..., G2, G1 = G to be embedded via
the original embedding for Gc and the refinement method. As already mentioned,
multilevel approaches have been employed in [12] which use neural nets to move from
layer ` to layer `− 1. We take a different approach (not involving neural nets) which
attempts to use the clusters at every coarsening level.

Next, we provide a brief outline of the coarsening scheme that we have implemented;
more details are found in [13]. We first introduce the modularity functional [2] for
a given weighted graph. Let A = (aij) be the weighted adjacency matrix associated
with the graph, i.e., aij is nonzero if (i, j) is an edge of G. We allow for negative
entries, but require that the rowsums (weighted degree) wdeg(i) =

∑
j

aij be positive.

Also, let T =
∑
i

wdeg(i) be the total rowsum. The popular modularity functional

associated with the partitioning {A} reads [2],

Q =
1

T

∑
A

∑
i,j∈A

(
aij −

1

T
wdeg(i)wdeg(j)

)
.

which, at an intuitive level, has the effect of measuring the degree to which the clus-
tering reflects actual community structure by balancing aggregate size while implicitly
comparing the edges internal to communities with the edges external to communi-
ties. Specifically, 1

T
wdeg(i)wdeg(j) can be interpreted as the probability that an edge

between i and j may exist and the sum over the aij − 1
T
wdeg(i)wdeg(j) is inspect-

ing whether the distribution of edges internal to a community is more or less than

4 BENJAMIN QUIRING† AND PANAYOT S. VASSILEVSKI

expected, given the probabilities. Also, Q lies in the interval [−1, 1], and higher Q
values are associated with a better community structure (as the distribution of edges
internal to the community is higher than expected by just looking at the weighted
degree of vertices), so the ultimate goal is to find aggregates which maximize Q.

At the original fine level each A corresponds to a single vertex {i}. If we merge
(match) two vertices i and j and form a new aggregate, the modularity will change,
and the corresponding change we denote by ∆Qij. The modularity-based coarsening
that we employ attempts to merge two neighboring vertices with large positive ∆Qij.

Our coarsening scheme utilizes ∆Qij as edge weights. It is straightforward to
see that T

2
∆Qij are actually the entries of the modularity matrix B = (bij), bij =

aij− 1
T
wdeg(i)wdeg(j) = T

2
∆Qij. Since B has zero rowsums, some of the entries ∆Qij

are negative and some are positive. We select an independent set of edges, which is a
set of edges none of which are adjacent in the graph i.e. no two distinct edges share
a vertex, in fashion similar to Jones and Plassmann’s parallel algorithm [3]. Namely,
we select an edge e = (i, j) for matching if it has locally maximal weight ∆Qij, that
is, if ∆Qij is larger that all other ∆Q’s corresponding to its neighboring edges (two
edges are neighbors if they share a common vertex). Such a choice does not interfere
with selection of other edges for matching which allows for easy parallelization. We
merge aggregates essentially until we cannot maximize Q further.

We apply this algorithm recursively to generate a hierarchy of coarse graphs. We
note though that our main contribution is not in the coarsening, but in refining a given
coarse level embedding to lead to fine level graph embedding, which we describe now.

3. The two-level coarse-to-fine procedure

We now discuss the refinement step to embed G` given an embedding of G`+1. For
simplicity (but without loss of generality) we restrict the discussion to a two-level
method, with a fine graph G and a coarse graph Gc related by π. We represent
the embedding of Gc by an array of coordinates {xA}A∈V (Gc) indexed by the coarse
vertices. The embedding of G is represented by an array of coordinates {xi}i∈V (G)

indexed by the fine vertices.
Suppose we have coordinates xA = (xAk)dk=1 ∈ Rd for each coarse vertex A. Then

for every A we want to find coordinates xi = (xi,k)dk=1 for each i ∈ A. To do this we
compute a ball (d-ball in Rd) of radius rA around each xA and spread the xi within.
Ideally, these balls should not intersect, as well as be quickly computable so as to
make the multilevel method feasible. A visual example of this approach is shown in
Figure 1.

MULTILEVEL GRAPH EMBEDDING 5

Figure 1. An example of embedding the fine layer via the embedded coarse layer.
The coarse vertices are located at the center of the semi-transparent balls.

3.1. Computing radii. To construct balls around each coarse level vertex A, we
compute a simulation that continuously expands a ball around each aggregate’s co-
ordinates until it collides with another coarse vertex’s ball. The balls stop expanding
once they have collided with any other (expanding or non-expanding) ball. Each
aggregate A may have its own rate of expansion vA (for example, dependent on its
size) though we use a constant rate of expansion across all aggregates for the imple-
mentation results discussed in this paper.

To compute this simulation we first we consider a new (dense) coarse-level graph
whose vertex set is the same as Gc and whose edge weights dAB are the distance
between connected aggregates:

dAB =

{∥∥xA − xB
∥∥ , ec = (A,B) ∈ E(Gc),

∞, otherwise.

Here ‖.‖ is the standard Euclidean norm. Note that we consider the graph as dense,
but the edges that are not originally present are heavily weighted which makes them
non-essential in the following procedure. If desired,

∥∥xA − xB
∥∥ may be taken as the

dA,B for every A,B.
Taking this graph with positive weighted edges representing distances, we compute

radii of the balls around each coarse vertex via the following described algorithm. The
algorithm tracks the set of still-expanding balls, and uses a priority queue, which con-
tains objects with associated priorities which allows inspection of the highest priority
element and insertion and removal of elements ([14], p. 162), to determine the next
collision between balls. The elements of the priority queue are edges each associated
with the time of the potential collision between the balls of the vertices of the edge;
in this case higher priorities correspond to sooner collision times.

6 BENJAMIN QUIRING† AND PANAYOT S. VASSILEVSKI

If a coarse vertex’s ball is still expanding it is live, otherwise it is dead. As balls
collide they transition from live to dead. Each edge (A,B) in the queue can have its
time of potential collision tAB be in one of two cases (up to symmetry):

• If both A and B are live then the time for the two live balls to expand and
cover the distance dAB is tAB = dAB

vA+vB
.

• If A is live and B is not live then the time for the single live ball to travel the

distance dAB − rB is tAB = dAB−rB
vA

.

If bothA and B are dead they will never collide at a later time. Initially all pairs are in
the first case. The high-level idea behind the algorithm is that it continually takes the
next collision between live balls and updates the times to collision for balls adjacent
to the collision, repeating until no more collisions can occur (all coarse vertices are
dead). The full algorithm to compute the simulation appears in Algorithm 1.

This algorithm finds a ball around all coarse vertices that have neighbors, so in
particular the algorithm will always obtain balls for connected graphs with more
than one vertex. Additionally, if non-edge pairs from the original coarse-level graph
are given infinite distance between them in the coarse-level distance graph they will
never collide, so these pairs can be ignored and the algorithm can exploit the sparsity
of the original coarse-level graph.

The fact that the non-existent edges are ignored is what makes the requirement for
the initial embedding to spread out sparsely connected aggregates vital. Two discon-
nected aggregates that are embedded close to each other will often have their balls
intersect, which propagates to the finer levels. These edges may be considered (by
taking dAB to always be the distance between aggregates) but doing so is computa-
tionally infeasible for large graphs. One potential solution to this problem would be
to use efficient k-nearest neighbor methods (for example, [16]) to locate geometrically
close unconnected aggregates and use such information to ensure that their balls will
not overlap.

3.2. Parallel extension of the radii algorithm. The algorithm described above is
sequential. It can be implemented in both a distributed-memory and shared-memory
parallel setting by computing the radii locally using the previous, coarser level, re-
quiring the newly computed balls to be contained within the balls from the previous
level. This allows the method to perform the simulation locally within each coarser
aggregate.

Specifically, if A is a coarser aggregate of the coarse vertices of Gc, then we run
Algorithm 1 on coarse graph Gc restricted to the coarse vertices in A. with either
only the original edges or all pairs of vertices. This gives us initial radii rA for each
A ∈ A. We then perform rescaling to ensure that every one of the new balls lives
within the larger ball computed around the coarser aggregate A at the previous layer.

Recall the aggregates A with coordinates xA are embedded in the ball around the
coarser aggregate A with coordinate xA and radius rA. Now let

α = max
A∈A

∥∥xA − xA
∥∥+ rA

MULTILEVEL GRAPH EMBEDDING 7

Data: A coarse-level graph Gc with associated edge weights dAB based on
distances from a coarse-level embedding. Additionally, velocities vA
associated with each of the coarse vertices.

Result: A radius rA associated with each coarse vertex A corresponding with
the solution of the described simulation.

let Q be an empty priority queue;
for each edge ec = (A,B) do

insert ec into Q with priority dAB
vA+vB

;

end
while Q is non-empty do

let ec = (A,B) ∈ Q be the element with highest priority;
case only A is live do

set rA = dAB − rB;
set A to be dead;
remove any pairs (A, C) where C is dead from the queue;
remove and reinsert all pairs (A, C) ∈ Q where C is alive with updated

priority tA,C = dAC−rA
vC

;

end
case both A and B are live do

set rA = dAB vA
vA+vB

and rB = dAB vB
vA+vB

;

set both A and B to be dead;
remove any pairs (A, C) where C is dead from the queue;
remove any pairs (B, C) where C is dead from the queue;
remove and reinsert all pairs (A, C) ∈ Q where C is alive with updated

priority tA,C = dAC−rA
vC

;

remove and reinsert all pairs (B, C) ∈ Q where C is alive with updated

priority tB,C = dBC−rB
vC

;

end
end

Algorithm 1: Algorithm for computing the simulation of expanding balls around
aggregates.

where α is the distance between xA and the farthest point on the balls of the aggregates
A, and could be smaller or larger than 1. We then update each xA to be

xA + rA
xA − xA

α

and update each rA to be

rA
rA

α

which is a rescaling of xA and the ball for A around xA so that each newly computed
ball is contained within the previous level’s ball. Since there are no intersections
between balls around the coarser aggregates on the previous level, the balls on the

8 BENJAMIN QUIRING† AND PANAYOT S. VASSILEVSKI

current coarse level do not intersect. This procedure can be done locally for each
coarser aggregate A (i.e. it does not rely on more than one coarser aggregate) and so
can be done in both a shared-memory or distributed-memory parallel setting.

Alternatively, when locally computing radii within the coarser aggregate A any

edges of the form ec = (A,B) with A ∈ A and B /∈ A can use the priority tAB = rA

vA
,

which approximates the collision of A with B by the collision of A with the ball
around A.

We note that currently our implementation is not distributed-memory parallel but
is shared-memory parallel and does use the first local method described above (not
the alternative). The time to compute the radii with the local method appears to be
negligible compared with the time needed for the rest of the embedding algorithm,
described in the next section.

4. Extending embedding algorithms to multilevel embedding
algorithms

In this section, we first present our general approach to multilevel embedding, and
then apply it to two specific settings. We continue with describing the two-level
procedure for clarity, as the multilevel method is the iterative application of the two-
level method between consecutive levels of the multilevel partitioning.

4.1. Extending any given algorithm to a multilevel method. For any given
graph embedding algorithm, referred to as the base graph embedding algorithm, we
first embed the coarsest level of the hierarchy using the base algorithm. From here
(in a recursive fashion through the hierarchy), one can embed a finer level from the
next coarser one by running the given base embedding algorithm for each aggregate
A on the finer graph restricted to the members of A, obtaining “local” coordinates
for each finer vertex i ∈ A. This is the local method which gives the local embedding
of the fine-level graph restricted to a single aggregate; when applied to the original,
fine-level graph (or to a whole level) the base embedding algorithm is referred to
as the global method. For each aggregate A, once the local coordinates have been
computed for each fine-level vertex, we translate the coordinates to be centered about
the origin, scale them to be within rA away from the origin, and finally translate them
to be centered about xA. After handling every aggregate, we obtain coordinates for
every fine vertex and have embedded the finer layer. The process is then recursively
applied to the next finer layer. Since the size of aggregates on each level can be
made small if the partitioning was done with an appropriate coarsening factor, even
a computationally expensive base embedding algorithm can be used locally. This
process extends the given base embedding algorithm to a multilevel one.

Additionally, one can consider when embedding an aggregate A in the local embed-
ding method (in addition to the coarse graph restricted to A) all fine vertices adjacent
to A (that is, the set {j | e = (i, j) ∈ E(G), i ∈ A, j 6∈ A}) as well as their edges
crossing into A so as to capture boundary conditions and global embedding structure.
The coordinates of the external vertices j (i.e. j /∈ A) can be approximated by the
coordinate of the aggregate they belong to, so if j ∈ B then xj ≈ xB is used by
the local embedding method for A. The local embedding method does not update

MULTILEVEL GRAPH EMBEDDING 9

the coordinates of the external vertices. As with the radii, the application of the lo-
cal embedding method can be done in both a distributed-memory or shared-memory
parallel setting by applying it per aggregate. We refer to base embedding algorithms
which use the approximate external information as semi-local methods.

Finally, if the base embedding algorithm is iterative in nature, then our multilevel
method can be used as a preconditioner, providing better initial coordinates (than
random) for applying the base embedding algorithm to the whole of the fine level
graph as a global method. In this case, we refer to the base embedding algorithm
being applied globally for some iterations during the multilevel method as global
iterations. We note that these can also be done on the coarser graphs at each level of
the hierarchy, and we still refer to them as global methods and global iterations. In
contrast, the iterations which are applied on a per-aggregate basis are referred to as
local iterations. The word ’global’ will essentially refer to inspecting a graph without
looking at the computed multilevel community structure, while locally will generally
refer to inspecting aggregates of the community structure.

4.2. Embedding via functional minimization. In this section, we present a semi-
local embedding algorithm that exploits functional minimization. It can be used
as a possibly expensive base algorithm, which from our general approach described
above can be used as a component for embedding in a multilevel fashion. We do
not propose this method as an excellent standalone method, but present how it fits
with our multilevel method and how the multilevel method helps aleviate some of its
flaws. We describe the two-level version of the method. All coordinates are initialized
randomly within the unit cube in Rd.

We are trying to update the coordinate xi where i ∈ A. We consider the functional

Jloc(t) =
∑

j:e=(i,j)

wj ‖t− xj‖2 +
∑

j:j∈A,j 6=i

mj

‖t− xj‖

where ‖.‖ is the standard Euclidean norm and wj,mj > 0 are chosen weights, such
as the weight assigned to the edge e = (i, j) or a chosen constant. The coordinates of
vertices j ∈ B 6= A where e = (i, j) exists are approximated using xB, as previously
mentioned. The first term of 4.2 pulls connected vertices together while the second
pushes all pairs of vertices apart.

To find a better coordinate for vertex i we would like to take

xi = min
t∈Rd

Jloc(t).

However, a minimum over the whole space may be difficult to find. Therefore we
employ an iterative process which only searches through one-dimensional subspaces.

We choose a finite set of points {p}; these will be related to the directions in which
xi may update in. For example, in Rd these could be for example ±ei, where ei is
the ith basis vector, the points of the regular d-simplex inscribed in the unit d-sphere,
random unit vectors, or {xj | e = (i, j) ∈ E(G)}. Taking the previous coordinate of
i, xi, for each p we examine the function

Jp
loc(t) =

∑
j:e=(i,j)

wj ‖(1− t)xi + tp− xj‖2 +
∑

j:j∈A,j 6=i

mj

‖(1− t)xi + tp− xj‖

10 BENJAMIN QUIRING† AND PANAYOT S. VASSILEVSKI

(a) Minimization method applied globally to the fine
graph (not using aggregates).

(b) Minimization method applied in a multilevel fash-
ion.

Figure 2. Embeddings obtained via the minimization method. The same graph
(ca-netscience [10]) is embedded for both images, and the colors represent the (coarsest)
aggregates used and are the same between the two images. We let wj be a large constant
(≈ 10000) and mj = 1, and performed 10 global iterations of the minimization method
on each level, including the fine level. The points p were ±e1,±e2. We ran the global
method until convergence. Even on this small graph embedding, the unparallelized multi-
level method is more than 10x faster at embedding. The multilevel method also removes
the close geometrical association of non-connected communities which occurs mainly with
the blue and light green aggregates, and appears to give a better use of the embedding
space and simply provides a better structured embedding, thus correcting some deficien-
cies of the base embedding algorithm. Overall, we see that the less expensive multilevel
method 2(b) with only a few global iterations achieves a better quality embedding than
the expensive global method 2(a).

for 0 < t < 1. This is Equation 4.2 such that t is in the open line segment {(1 −
t)xi + tp | 0 < t < 1}.

We find a local minimum tp for Jloc on each of these intervals and take xi to be the
minimum on Jloc from those. To embed the current level in the multilevel hierarchy,
we iterate over each A and i ∈ A, updating xi, until the change in Jloc(xi) is small.

We can either use this method as a global one and apply it to the whole graph
(taking a two-level hierarchy with the coarse level containing only a single aggregate),
or as described above it can be applied in a multilevel fashion, with just a few global
iterations applied to each level. The results of the global method (i.e. no aggregates
used) and the multilevel version with a small number of global iterations are in Figure
2(a) and Figure 2(b), respectively, one may see that the multilevel method corrects
some problems that the global method has such as geometrically overlapping non-
adjacent aggregates.

We now discuss the extension of an existing algorithm to a semi-local multilevel one
by applying the proposed multilevel scheme described in Section 4.1 to the ForceAtlas2
algorithm.

MULTILEVEL GRAPH EMBEDDING 11

4.3. Extending the ForceAtlas2 Algorithm. ForceAtlas2 is a physics-inspired
force-directed algorithm for graph embedding in Rd designed for visualization pur-
poses and incorporated into the Gephi network visualization software [8]. ForceAtlas2
relies on three forces: an attraction force pulling together connected vertices, a re-
pelling force pushing apart all pairs of vertices, and a gravitational force pulling all
vertices towards the origin of the embedding space. The forces are used to compute
velocities for vertices and the vertices are moved iteratively until only a small change
is observed. We present a semi-local extension of the algorithm below which adds a
fourth force that factors in external information.

We present the method in a two-level fashion as in the previous section. All co-
ordinates are initialized randomly, and we assume throughout the iterative process
that all coordinates xi are distinct and non-zero. Let dir(i, j) =

xj−xi

‖xj−xi‖ be the unit

vector from xi pointing towards xj (the direction from xi towards xj).
The attraction force pulling i towards j is given by

(1) Fattract(i, j) = kattract aij ‖xj − xi‖ dir(i, j)

where kattract > 0 is a constant. Note that if (i, j) is not an edge then aij = 0 and so
this force is similarly 0.

The repulsion force pushing i away from j is given by

(2) Frepel(i, j) = −krepel
(wdeg(i) + 1)(wdeg(j) + 1)

‖xj − xi‖2
dir(i, j)

where krepel > 0 is a constant.
The force of gravity for vertex i is

(3) Fgravity(i) = −kgravity (wdeg(i) + 1)
xi

‖xi‖
where kgravity > 0 is a constant.

The semi-local component, which we call the orientation force, for vertex i ∈ A
and external vertex j ∈ B is

(4) Forient(i, j) = korient
1

‖xi‖
dir(A,B)

where korient is a constant. This force orients the local embedding of the aggregate
to match the global geometric structure of the embedding. We scale by 1

‖xi‖ so that

vertices are not pulled too far away from the origin in the case that Forient(i, j) is
a dominant force on i; the further xi is from the origin the less dominant this force
becomes. We note that when we apply ForceAtlas2 as a global method then this force
does not exist (not used), but when it is applied as a local method this force is used.

The total force acting on vertex i, Fi, is the sum of the forces in equations (1), (2),
(3), and (4):

Fi =
∑

e=(i,j)∈E(G)
j 6=i
j∈A

[
Fattract(i, j) + Frepel(i, j)

]
+

∑
e=(i,j)∈E(G)

j /∈A

[
Forient(i, j)

]
+ Fgravity(i)

12 BENJAMIN QUIRING† AND PANAYOT S. VASSILEVSKI

We let x = (xi) and F = F(x) = (Fi). In [8], the authors have proposed a
method that effectively implements an explicit time-stepping scheme for driving the
dynamical system dx

dt
= F(x) starting from some (random) initial position x = x(0),

to a stationary point. As a result, once the forces F(x) for a given configuration
x = (xi) are computed, the vertices are moved according to how the sum of the forces
dictate. We note that a measure of convergence of ForceAtlas2 can be based on the
sum of the norms of the forces, since when reaching stationary point they will be
zero. That is, we use

(5)

√∑
i

|Fi|2

as smaller forces indicate the vertices are moving less. This measure will not necessar-
ily monotonically decrease, however, as the ForceAtlas2 does not directly minimize
this measurement, as opposed to the functional minimization procedure described
previously. The above modified procedure combined with our multilevel framework
is the multilevel ForceAtlas2 algorithm.

The ForceAtlas2 procedure appears to obtain a high-quality result for with rela-
tively few iterations for small graphs. Since the size of aggregates are small (and
in fact, coarsening methods often allow for choosing the approximate size of aggre-
gates via choosing the coarsening factor) they require only a few iterations of the
semi-local ForceAtlas2 algorithm to obtain quality results for the local embeddings,
whereas applying ForceAtlas2 in a global manner takes many more.

Sample embeddings of the fine-level graph from the global ForceAtlas2 algorithm
as well as both the multilevel version with global iterations applied at each level and
without any global iterations applied at any level are shown in Figure 3(c), 3(f), and
3(i) respectively.

Figures 3(a), 3(b), and 3(c) show the results of the base ForceAtlas2 algorithm on
the three different levels of the partitioning structure. Figures 3(d), 3(e), and 3(f)
show the results of the multilevel ForceAtlas2 procedure with global iterations applied
to each of the levels. Figures 3(g), 3(h), and 3(i) show the results of the multilevel
ForceAtlas2 procedure without global iterations applied to each of the levels.

The visual quality of the multilevel embedding with global iterations is approxi-
mately the same as the original algorithm, though the global algorithm took many
more iterations to create an embedding of the same visual quality. The high variance
of the geometric densities of vertices in Figure 3(i) indicates why having different
speeds for the radii computations may be useful: a faster rate of increase for larger
aggregates would provide a larger ball around these aggregates, giving more room to
spread their vertices around in. For visualization purposes this could give a higher
quality embedding since the density of vertices in the space will have less variance.

In Figure 4 we show the performance of the multilevel approach with no global
iterations applied to a much larger graph on which the global ForceAtlas2 method
becomes infeasible to run. We zoom in on the embedding structure to show that at
each level, the communities are in fact embedded in a way that respects the structure
of the graph and the global structure of the embedding. We note that the graph in
Figure 4 is planar, and that a non-planar example is used in Figure 3. The global

MULTILEVEL GRAPH EMBEDDING 13

(a) Global embedding of the
coarsest level.

=

(b) Global embedding of the
middle level.

(c) Global embedding of the
finest level.

(d)

=

=⇒

(e) Multilevel embedding of
the middle level with global
iterations applied on all lev-
els.

=⇒

(f) Multilevel embedding of
the finest level with global it-
erations applied on all level.

(g)

=⇒

(h) Multilevel embedding
of the middle level without
global iterations applied on
any level.

=⇒

(i) Multilevel embedding of
the finest level without global
iterations applied on any
level.

Figure 3. A comparison of the global ForceAtlas2 embedding with 1000 iterations,
the multilevel procedure with 10 global iterations at each level and 10 local iterations for
embedding each aggregate on each level, and the multilevel ForceAtlas2 embedding with
10 local iterations for embedding each aggregate on each level. The constants (krepel,
etc) of the ForceAtlas2 algorithm were set to 1. The same graph (ca-netscience [10])
is embedded as in Figures 2(a) and 2(b) with the color of the aggregates still matching.
Each level of embedding is also shown.

14 BENJAMIN QUIRING† AND PANAYOT S. VASSILEVSKI

⇓
⇓ ⇓

⇓
⇓ ⇓

⇓
⇓ ⇓

Figure 4. Zooming in on an embedding of usroads (126k vertices, 324k edges) [10]
from the multilevel ForceAtlas2 with no global iterations. Each row corresponds to a
different level in the hierarchy, and moving from left to right zooms in towards the left
corner. Colors represent the coarsest aggregates, and due to the large number of aggregates
some colors are duplicated.

MULTILEVEL GRAPH EMBEDDING 15

ForceAtlas2 or multilevel ForceAtlas2 with a few global iterations, even just at coarser
levels, would likely alleviate the clumping of vertices that the multilevel method alone
gives. However, running the global ForceAtlas2 method to completion is computa-
tionally infeasible, and even just a few global iterations on the finest level proves very
expensive, though applying the global iterations only to the coarser levels is feasible.

4.4. Results. To evaluate our embedding method, we inspect the speed-up from us-
ing our shared-memory parallel implementation over a sequential version and also
provide some baseline partitioning times. We then evaluate the multilevel ForceAt-
las2 method as a preconditioner for the global ForceAtlas2 method by inspecting the
convergence of the ForceAtlas2 method on randomly initialized coordinates and co-
ordinates initialized via our multilevel method. Table 1 provides information about
the graphs tested.

We note that METIS does not reflect the state-of-the-art in fast partitioning; for
more discussion see [15].

Dataset |V |, |E| number of
levels

sequential partition

time (seconds)
ENZYMES-g479 [10] 28, 98 2 0
mesh 1 100, 360 2 0
ca-netscience [10] 379, 1828 3 0
Blog [11] 10k, 330k 4 2.3
usroads [10] 126k, 324k 6 4.3
Youtube [11] 1.1M, 3M 6 145
roadNet-CA [10] 2M, 2.8M 7 106
socfb-B-anon [10] 3M, 21M 7 1364
soc-livejournal [10] 4M, 28M 7 1358
soc-orkut [10] 3M, 106M 7 3783

Table 1. Data for the graphs used, including the number and size of levels along with
the partitioning time. All graphs are partitioned with a coarsening factor of 0.1 using
METIS (sequential) as a baseline for partitioning timing. METIS allows the construction
of a multilevel hierarchy with a consistent coarsening factor between the levels of the
hierarchy.

1The vertices and edges of a 9× 9 grid of squares.

16 BENJAMIN QUIRING† AND PANAYOT S. VASSILEVSKI

Dataset
sequential
embedding

time (seconds)

shared-memory

parallel (36 threads)

embedding time

(seconds)

Speed-up from
parallelization

MILE embedding

time [12] (seconds)

Speed-up
over MILE

Blog 2 1 (2x) 10.2 (10x)
usroads 4 2 (2x) - -
Youtube 212 54 (4x) 1153.2 (21.35x)
roadNet-CA 157 6 (26x) - -
socfb-B-anon 446 26 (17x) - -
soc-livejournal 452 25 (18x) - -
soc-orkut 841 48 (18x) - -

Table 2. Sequential and shared-memory parallel running times for the multilevel
ForceAtlas2 embedding method. All constants (krepel, etc.) were set to 1, and we used
d = 2. The multilevel ForceAtlas2 method was performed with 1000 iterations on the
coarsest level, 10 local iterations were used to embed each aggregate on each level and no
global iterations on any level (other than the coarsest) were performed.

Table 2 provides timing information associated with the multilevel ForceAtlas2
method. The time it takes for the algorithm to complete, even sequentially, is very
promising for the general method we propose. Compared to [12] (parallelized, 32
threads), which used the Blog (PPI in [12]) and Youtube graphs, our parallelized
method achieves a 10-20x speed-up. The authors of [12] also tested on a graph with
8M vertices and 40M edges, which they embedded in “less than 3 hrs”. The Orkut

graph has a much larger edge set than this graph, which we were able to embed in less
than a minute with the parallel implementation. With a state-of-the-art partitioner
the total time to embed should remain less than 5 minutes. We note that the user
also has a great deal of control over the running time (which is roughly correlated
with embedding quality) since the user can specify exactly how many ForceAtlas2
iterations (both local and global) are used at every level. We also note that increasing
the dimension should scale the running time by only a constant factor, and that the
global ForceAtlas2 method is not feasible to run for the larger graphs.

For most graphs almost all of the time spent in the embedding procedure was
used in the embedding of the final level. This means that to improve the quality of
the embedding with experiencing significant slowdown one may do many more local
iterations on the coarser levels, and perhaps also global iterations on the most coarse
levels. Parallelization achieves decent speed up for the number of threads it uses as
both ForceAtlas2 and the radii computations exploit shared-memeory parallelization
well, although some components of these methods cannot be parallelized. Another
attractive feature of our approach is that the benefits of parallelization appear to
grow with the size of the input graph.

As stated previously, the time to compute the radii is very fast. For example, even
with an asymptotically suboptimal implementation, on the finest level of the orkut

graph the time to compute the radii was 1.25 seconds while the time to embed the
finest level was 44.4 seconds (total embedding time was 48 seconds). This further gives
evidence that our proposed multilevel method may work well for any given embedding
algorithm; even extremely cheap methods will likely not have their embedding times
dominated by the radii computations.

MULTILEVEL GRAPH EMBEDDING 17

(a) Convergence results for d = 2.

(b) Convergence results for d = 3.

Figure 5. We plot the log10 of convergence value (log10(
√∑

i |Fi|2)), for the global
ForceAtlas2 method using random and multilevel ForceAtlas2 initialized coordinates on
various graphs. The randomly initialized coordinates were scaled to be within the ball of
radius |V | around the origin (as opposed to the unit ball), and similarly for the coordi-
nates initialized via the multilevel ForceAtlas methods. The Figure 5(a) corresponds to
the methods run with dimension d = 2, and Figure 5(b) corresponds to the methods run
with dimension d = 3. We tested randomly initialized coordinates (“random”), the multi-
level ForceAtlas2 method with no global iterations (“preconditioned”), and the multilevel
ForceAtlas2 method with 10 global iterations applied to every level except for the original
fine graph (“preconditioned + global”).

We also inspect the degree to which are method serves as a preconditioner for
ForceAtlas2. Such a metric provides evidence that our embedding method approx-
imates the globally high-quality embedding ForceAtlas2 produces (even though it
does not directly attempt to mimick ForceAtlas2 globally), and in general using a
multilevel method as a preconditioner serves as a method to evaluate a community-
based embedding: since a community-based embedding should not only try to embed
communities well locally but also have some global coherence, comparison using a
method which obtains high-quality results and does both of these (though in an ex-
pensive manner) proves beneficial. For applications other than visualization, which

18 BENJAMIN QUIRING† AND PANAYOT S. VASSILEVSKI

is the main target of the ForceAtlas2 procedure, a similar method could be used,
but with a global method designed for the respective applications. For example, a
global procedure which creates high-quality coordinates for classification tasks could
be used.

Figure 5 provides a plot of the convergence of the global ForceAtlas2 method ap-
plied to a random initialization of coordinates, initialization of coordinates with our
multilevel ForceAtlas2 method, and initialization of coordinates with our multilevel
ForceAtlas2 method with global iterations, for embedding in both 2 and 3 dimen-
sions. We measure the degree to which the global ForceAtlas2 method has converged
by the measure in Equation (5). In both cases, our multilevel method served as a
good preconditioner, improving the convergence by a about an order of magnitude
for d = 2 and slightly less than an order of magnitude for d = 3. Additionally, the
improvement appears to grow as the size of the graph does, which is expected as
our method provides a good approximation to the global structure and as the input
graph grows large, it becomes increasingly difficult for the global ForceAtlas2 method
to ’sort out’ the locations of the vertices relative to each other. The global iterations
provided almost no benefit for small graphs, though did some benefit for the larger
graphs, decreasing the variance in the convergence when d = 2 and slightly improving
the convergence over the plain multilevel method for both d = 2 and d = 3. These
results signal that our method approximates global structure well and provides a good
estimate for visualization purposes.

5. Conclusions and outlook

In this paper, we demonstrated that by utilizing multilevel coarsening of sparse
large-scale graphs that respects community structures at every coarsening level, we
can make any available embedding algorithm more scalable and computationally fea-
sible, by applying it locally at every level. We demonstrated the feasibility of this ap-
proach to the base algorithm of [8], as well as a simple functional minimization embed-
ding procedure. We achieved a significant speed-up with our shared-memory parallel
implementation over the recent paper [12], which could be extended to a distributed-
memory parallel implementation. Additionally, our method provides many options,
especially for iterative base algorithms, which can be fine-tuned for visualization or
other purposes in a future update to our implementation. Developing more techniques
to help improve the quality of embeddings, such as eliminating the “clumping” as seen
in Figures 3(i) and 4, is a clear next step. Two potential remedies include consider-
ing overlapping communities, such as in [17], in the coarsening so as to place each
fine vertex in a location that approximates their location within each aggregate they
belong to, and to examine each level of the multilevel hierarchy multiple times in the
spirit of the “V-cycles” of the Algebraic Multigrid method [5] to adjust the location of
vertices within the global embedding (as opposed to the local embedding around an
aggregate). We stress agian, that the main goal of the current paper was to demon-
strate the feasibility of the proposed multilevel approach which, as we have shown, is
promising.

Our code is available under a GNU GPL 2.1 license at github.com/LLNL/graph-
embed.

MULTILEVEL GRAPH EMBEDDING 19

Acknowledgment

This work was part of a summer project performed by the first author as summer
intern at LLNL in 2018 and 2019.

References

[1] G. Karypis, G. and V. Kumar, “A fast and high quality multilevel scheme for partitioning
irregular graphs,” SIAM Journal on Scientific Computing 20(1)(1999), pp. 359–392.

[2] M.E.J. Newman, “Networks. An Introduction”, Oxford University Press, New York, 2010.
[3] M. T. Jones and P. E. Plassmann, ”A Parallel Graph Coloring Heuristic,” SIAM Journal on

Scientific Computing, 14(3), 1993, pp. 654–669.
[4] P. Vaněk, J. Mandel, and M. Brezina, Algebraic multigrid by smoothed aggregation for second

and fourth order elliptic problems, Computing, 56 (1996), pp. 179–196.
[5] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, J. Ruge, Adaptive

Smoothed Aggregation αSA Multigrid, SIAM Review, Vol. 47, pp. 317–346 (2005).
[6] Y. Notay, An Aggregation-Based Algebraic Multigrid Method, Electronic Transactions on Nu-

merical Analysis, Vol. 37, pp. 123–146 (2010).
[7] P. D’Ambra, S. Filippone, P. S. Vassilevski, “BootCMatch: a software package for boot-

strap AMG based on graph weighted matching,” ACM Transactions on Mathematical Software
(TOMS) 44(4)(2018) Article No. 39, dl.acm.org/citation.cfm?doid=3233179.3190647.

[8] M. Jacomy, T. Venturini, S. Heymann, M. Bastian, “ForceAtlas2, a Continuous Graph Layout
Algorithm for Handy Network Visualization Designed for the Gephi Software.” 2014. PLoS ONE
9(6): e98679. https://doi.org/10.1371/journal.pone.0098679

[9] V. D. Blondel, J. Guillaume, R. Lambiotte, E. Lefebvre, “Fast unfolding of communities in
large networks.” 2008. Journal of Statistical Mechanics: Theory and Experiment. arxiv.org/
abs/0803.0476

[10] R. A. Rossi and N. K. Ahmed, “The Network Data Repository with Interactive Graph An-
alytics and Visualization.” Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence. networkrepository.com

[11] R. Zafarani and H. Liu, Social Computing Data Repository at ASU (2009). Tempe, AZ: Ari-
zona State University, School of Computing, Informatics and Decision Systems Engineering.
socialcomputing.asu.edu.

[12] J. Liang, S. Gurukar, and S. Parthasarathy, “A Generic Approach to Scale Graph Embedding
Methods.” www.kdd.org/kdd2018/files/deep-learning-day/DLDay18_paper_25.pdf

[13] B. Quiring and P. S. Vassilevski, “Properties of the Graph Modularity Matrix and its Applica-
tions,” Lawrence Livermore National Laboratory Technical Report LLNL-TR-779424, June 26,
2019.

[14] T. Cormen, et al, “Introduction to Algorithms, Third Edition.” 2009, MIT Press.
[15] S. Ghosh, et al. “Distributed Louvain Algorithm for Graph Community Detection”. 2018. IEEE

International Parallel and Distributed Processing Symposium.
[16] M. Parwary, et al. “PANDA: Extreme Scale Parallel K-Nearest Neighbor on Distributed Archi-

tectures”. 2016. IEEE International Parallel and Distributed Processing Symposium.
[17] Sharon, E., Brandt, A. and Basri, R., 2000, June. Fast multiscale image segmentation. In

Proceedings IEEE Conference on Computer Vision and Pattern Recognition. IEEE CVPR 2000
(Vol. 1, pp. 70-77).

† Computer Science Depatrtmemnt, Northastern University, Boston, MA 02115,
U.S.A., Center for Applied Scientific Computing, Lawrence Livermore National Lab-
oratory, P.O. Box 808, L-561, Livermore, CA 94551, U.S.A.

Email address: quiring.b@northeastern.edu, vassilevski1@llnl.gov

dl.acm.org/citation.cfm?doid=3233179.3190647
https://doi.org/10.1371/journal.pone.0098679
arxiv.org/abs/0803.0476
arxiv.org/abs/0803.0476
networkrepository.com
socialcomputing.asu.edu
www.kdd.org/kdd2018/files/deep-learning-day/DLDay18_paper_25.pdf

