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IMPROVING SOLVE TIME OF AGGREGATION-BASED
ADAPTIVE AMG

PASQUA D’AMBRA AND PANAYOT S. VASSILEVSKI

Abstract. This paper proposes improving the solve time of a bootstrap AMG
designed previously by the authors. This is achieved by incorporating the informa-
tion, set of algebraically smooth vectors, generated by the bootstrap algorithm, in
a single hierarchy by using sufficiently large aggregates, and these aggregates are
compositions of aggregates already built throughout the bootstrap algorithm. The
modified AMG method has good convergence properties and shows significant re-
duction in both, memory and solve time. These savings with respect to the original
bootstrap AMG are illustrated on some difficult (for standard AMG) linear systems
arising from discretization of scalar and vector function elliptic partial differential
equations (PDEs) in both 2d and 3d.

1. Introduction

Several black-box Algebraic MultiGrid (AMG) solvers have been introduced in the
near past ([6, 3, 10]) which avoid any a priori assumptions on the type of matrices or
their origin. They exploit hierarchies of coarse vector spaces and respective matrices
computed variationally, in the symmetric positive definite (s.p.d.) case, from the
given, original, fine-level sparse matrix. All these methods share the common feature,
that a current method (initially, a single-level one, such as Gauss-Seidel) is tested on
the homogeneous problem Ax = 0 with non-zero initial guess and if convergence
is deemed unacceptable, the most recent iterate (referred to as algebraically smooth
error component) is incorporated in the existing hierarchy of vector spaces. Then the
test is performed again with the new, adapted solver. The way the adaptation is done
differs in the various proposed adaptive, also referred to as bootstrap, AMG methods.
The building (setup) phase of these algorithms can be fairly expensive, which is to
be expected, but can be to a large extent amortized if the solver is used multiple
times, e.g., for different right-hand sides or applied to near-by matrices. Therefore,
to make these methods of practical interest it is important to have their solve phase
reasonably fast, as discussed in [4]. The latter is the main objective of the present
paper.

Key words and phrases. adaptive AMG, solve time, unsmoothed aggregation, compatible relax-
ation, weighted matching.
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The method proposed by the authors in [10] and extended later in [13], consists of
a sequence of aggregation-based AMG cycles, denoted by Br, r = 1, . . . , where each
consecutive Br is constructed on the basis of the product iteration matrix:

(1.1) Er−1 = (I −Br−1A) . . . (I −B1A),

which uses the previously constructed cycles Bs, s < r. Here A is the given n × n
sparse s.p.d. matrix. This product (or rather its symmetrized version) is applied
to a random vector several times to estimate its convergence radius. If the latter
is deemed unacceptable, i.e., staying above certain desired convergence factor, the
current iterate is used to create a hierarchy of coarse vectors spaces and interpolation
matrices that relate any two consecutive levels of the hierarchy. The coarsening is
based on the current-level algebraically smooth vector. On the first (fine) level this
is the vector created by the multiplicative error operator Er−1. On any given level,
the constructed algebraically smooth vector w is used to create aggregates, by several
steps of pairwise aggregation. Each step of pairwise aggregation uses the vector to
define edge weights of the matrix graph which are then used in a specialized weighted
matching algorithm. Then, a piecewise-constant interpolation matrix P is formed,
by projecting the current smooth vector on the aggregates, and the coarse matrix
Ac = P TAP is computed. On each consecutive coarse level, the restriction of the
previous (fine) level algebraically smooth vector w, i.e., wc = P Tw, defines the next-
level algebraically smooth vector w := wc. Applying this process recursively, until a
reasonable small coarse size is reached, the hierarchy of vector spaces is constructed.
They, together with standard (e.g., Gauss-Seidel) smoothers define the (unsmoothed)
aggregation based AMG operator Br.

In summary, each Br is constructed on the basis of an algebraically smooth vector
wr which is in turn constructed on the basis of the previous operators Bs, s < r.
There is a clear analogy with Krylov-type methods; indeed, in Krylov methods, some
search vectors are generated, where at every new iteration step, a new search vector
is constructed based on the previous search vectors and the (preconditioned) residual.
In the above described adaptive AMG, at each step, a new algebraically smooth vector
is constructed based on the previous ones (via their respective operators Br) and the
role of preconditioning is played by the construction of the hierarchy leading to Br.
Both the Krylov methods and the adaptive AMG will converge in at most n steps,
or equivalently, will generate at most n vectors (in exact arithmetic), and in practice
we expect this to take much smaller number of steps.

We note that the sequence {Br} requires storing of substantial amount of infor-
mation, since each Br comes with a hierarchy of matrices {Akr}nlk=0 and respective
interpolation matrices {P k

r }nl−1k=0 , where nl generally depends on r. The goal of the
present paper is to reduce this large memory requirement, which is a key issue for
scalable AMG on modern parallel architectures having millions of cores and decreased
memory per core (see e.g., [1, 12]). Since the vectors {wr}, via their respective {Br},
capture (by construction) all components of the error, the idea is that a single hi-
erarchy, that simultaneously coarsens these vectors, may as well do a similar job.
Savings in memory is also expected to come from the fact that although {wr} are
linearly independent (by construction), their local versions, i.e., their restrictions on
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aggregates, may be linearly dependent and this will let us use few of them locally.
This however comes with additional cost, for example, if we use SVD to extract such
linearly independent subset locally. Furthermore, the resulting interpolation matrix
will be denser which reflects also the sparsity of the coarse matrices. These consid-
erations are addressed in the remainder of the present paper, and our conclusions
are drawn based on running several tests on difficult (for classical AMG) matrices.
For these test problems the single-hierarchy multiple-vector aggregation-based AMG
resulting from our modification of the composite adaptive AMG shows good conver-
gence and superior performance; it requires less memory and has faster solution time.
We should stress though, that even with the achieved improvement over the original
bootstrap AMG, the resulting method can still be fairly expensive compared to the
more traditional AMG ones. However, the objective here is to design a genuinely
black-box algebraic solver without any a priory assumptions and avoiding the use of
any additional information that may be otherwise available for a particular problem
at hand.

The remainder of the paper is organized as follows. In Section 2, we briefly sum-
marize the algorithm for generating algebraically smooth vectors. Section 3 describes
the way we generate aggregates by weighted matching where the weights come from a
given algebraically smooth vector. Section 4 provides the details on the construction
of the multiple vector interpolation matrices in aggregation AMG. The assessment
of the quality of our modified multiple-vector aggregation-based AMG is found in
Section 5. We close with some conclusions in Section 6.

2. Generating algebraically smooth vectors using composite AMG

In [10, 13] we proposed a new adaptive AMG method employing a bootstrap process
which has the final objective to setup a composite AMG as in (1.1) with a prescribed
convergence factor. Each Br is an AMG operator built by an aggregation procedure,
named coarsening based on compatible weighted matching, which uses the most recent
sample of smooth vectors dynamically generated by testing the last available compos-
ite AMG on the homogeneous linear system Ax = 0, starting from a random initial
guess. Therefore, our bootstrap procedure (see Algorithm 1), at each stage r, sets up
a new AMG operator, i.e., a new hierarchy of aggregates and interpolation operators,
and a new sample of smooth vector. The bootstrap can be stopped either if the com-
posite AMG in (1.1) has reached the desired convergence rate or when a given number
of hierarchies is built. The above procedure differs from the bootstrap AMG algo-
rithm introduced in [3] in the way it incorporates new information on smooth vectors
in the final AMG. Indeed, our adaptivity approach re-applies the same aggregation
algorithm for computing multiple hierarchies of coarse spaces, each one of which in-
cludes one new smooth vector. The application of a multiplicative composition of the
computed hierarchies allows to obtain an efficient AMG method. The approach in [3],
at each bootstrap iteration, modifies an already computed AMG, characterized by a
given coarse space and a corresponding prolongator, in order to include global basis
of new smooth vectors in the previous coarse space by re-computing interpolation on
all levels.
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Data: A: matrix, w0: arbitrary vector, ρdes: desired conv. rate, maxstage: max
number of AMG operators, ν: number of iterations for testing phase

Result: AMG hierarchies to define Br, smooth vectors wr, r = 1, . . .
Initialize: r = 1, ρ = 1.0;
while ρ ≥ ρdes and r ≤ maxstage do

Building Phase: build new AMG operator Br;
apply coarsening based on compatible weighted matching to A and

wr−1;
Testing Phase: apply composite AMG and compute new smooth vector;

let x0 a random vector;
apply xj =

∏
r(I −B−1r A)xj−1, j = 1, . . . , ν (or a symmetrized

version);
estimate convergence factor ρ;
wr = xν/‖xν‖A;

end
Algorithm 1: Bootstrap Algorithm

As observed in [4], due to the cost of the setup algorithm, a bootstrap AMG
and more generally an adaptive AMG, is well suited for problems where standard
AMG methods, using a priori characterization of smooth error components, lose their
efficiency. Furthermore, the cost of the setup can be amortized when the same system
has to be solved for multiple right-hand sides (r.h.s.), as in time-dependent problems,
or when the method has to be applied to near-by matrices, as in Multilevel Monte
Carlo simulations.

In the following we give a brief outline of the coarsening based on compatible
weighted matching, which is our basic algorithm to build hierarchies of aggregates
and prolongators to define each new operator Br in Algorithm 1.

3. Review of compatible weighted matching coarsening

The basic kernel of Algorithm 1 is a completely automatic and general aggrega-
tion procedure for AMG methods which finds its starting point in the concept of
compatible relaxation introduced in [2] as a smoother that keeps the coarse variable
invariant. The above concept is widely used to compute measures of the suitability
of a coarse space for a given problem [2, 24, 15, 5, 4]. In our method, we define a
compatible relaxation by a D−orthogonal decomposition of the original, fine-level,
vector space Rn = Range(Pc) ⊕⊥ Range(Pf ), where D is a suitable s.p.d. matrix,
by exploiting weighted matching in the matrix graph. Let GC = (V,E,C) be the
weighted undirected graph associated to the symmetric matrix A = (aij)i,j=1,...,n,
where V = {1, 2, . . . , n} is the index set, E is the edge set and C = (cij)i,j=1,...,n

is a matrix of non-negative edge weights. A matching in GC is a subset of edges
M⊆ E such that no two edges share a vertex, while a maximum product matching is
a matchingM that maximizes the product of the weights cij of all edges (i, j) ∈M,
i.e., arg maxM

∏
(i,j)∈M cij. Maximum product matchings are successfully used in
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sparse linear algebra to move large matrix entries onto the main matrix diagonal
(see [14, 16, 18]).

LetM = {e1, . . . , enp} be a matching of the graph GC , with np the number of index
pairs, and let w = (wi)i=1,...,n be a given (smooth) vector; for each edge e = (i, j), we
can define the following two local vectors:

(3.1) we =
1√

w2
i + w2

j

[
wi
wj

]
and w⊥e =

1√
w2
j/aii + w2

i /ajj

[
−wj/aii
wi/ajj

]
,

where De =

[
aii 0
0 ajj

]
is the diagonal of the restriction of A to the edge e. Based

on the above vectors, two prolongators can be constructed:

(3.2) Pc =

(
P̃c 0
0 W

)
∈ Rn×nc , and Pf =

(
P̃f
0

)
∈ Rn×np ,

where:

P̃c = blockdiag(we1 , . . . ,wenp), P̃f = blockdiag(w⊥e1 , . . . ,w
⊥
enp

).

W = diag(wk/|wk|), k = 1, . . . , ns, is related to possible unmatched nodes in the case
M is not a perfect matching for GC and nc = np + ns.

The matrix Pc represents a piecewise-constant interpolation operator whose range
includes the original (smooth) vector w; furthermore, by construction (Pc)

TDPf = 0,
i.e., Range(Pc) and Range(Pf ) are orthogonal with respect to the D−inner product
on Rn, with D = diag(A). Exploiting the above decomposition, the matrix A admits
the following two-by-two block form:

(3.3) [Pc, Pf ]
TA[Pc, Pf ] =

(
P T
c APc P T

c APf
P T
f APc P T

f APf

)
=

(
Ac Acf
Afc Af

)
.

In the above setting, given a smoother M , the relaxation scheme defined by the
following error propagation matrix:

(3.4) Ef ≡ (I − Pf (P T
f MPf )

−1P T
f A)

is a compatible relaxation for the two-level method whose coarse variables are defined
by the prolongator Pc, i.e., xc = P T

c x. We observe that the sparsity pattern of the
above prolongator is completely defined by the pairwise aggregation stemming from
the matching M (see Algorithm 1 in [13]), while its values depend on the (smooth)
vector w. Relaxation defined by the matrix (3.4) is equivalent to an iteration of the
form: e`+1 = (I−M−1

f Af )e`, ` = 1, . . . , with Mf = P T
f MPf . Therefore, when matrix

Af is well conditioned or diagonally dominant, i.e., a Richardson-type relaxation
method on Af is fast convergent, the coarse variables defined by the prolongator Pc
can be considered a suitable coarse set for an efficient two-level method [15, 30]. To
this end we choose M so that the product of the diagonal entries of Af is as large
as possible. Note that Af has the same sparsity pattern of A with entries depending
on the entries of A and of the vector w. It can be well represented by the undirected
weighted graph GC = (G,C), where G is the unweighted undirected graph of A and
C is a suitable matrix of edge weights computable with linear complexity by simple
algebraic operations for relations in 3.1-3.3.
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In the above setting, we define the coarsening based on compatible weighted match-
ing, described in details in [13], that, starting from a maximum product matching of
the weighted graph GC , defines a general aggregation-based AMG which does not use
any a priori information on the system matrix. We observe that aggressive coarsen-
ing, with aggregates merging multiple pairs and having almost arbitrary large size of
the type nc = 2s for a given s, can be obtained by combining multiple steps of the
basic pairwise aggregation, i.e., by computing the product of (s) consecutive pairwise
prolongators. On the other hand, as expected, results discussed in [11] show that the
straightforward product of piecewise-constant interpolation operator, which includes
in its range only one sample of the smooth error, produces efficiency degradation of
our AMG method and more accurate interpolation operators obtained by weighted-
Jacobi smoothing of the piecewise constant interpolation operators are required. This
leads to a smoothed aggregation-type AMG method, which exhibits improved con-
vergence and scalability properties, but it produces more dense coarse matrices and
thus larger complexity, especially for linear systems arising from 3d PDE problems.
Here we propose an extension of the method where more effective prolongator opera-
tors are defined, as presented next. We follow the general strategy of the traditional
unsmoothed aggregation methods when we want to incorporate several algebraically
smooth vectors into the coarse hierarchy. What is different in our approach is the
origin of these vectors and the way we build the hierarchy of aggregates. The details
are outlined in the following section.

4. Multiple-vector interpolation matrices in aggregation AMG

To create aggregates of sufficiently large size we successively merge several levels of
pairwise aggregates which we assume are already available. In our case the hierarchy
of such pairwise aggregates are generated by the basic aggregation scheme discussed
in the previous section. The resulting sequence is denoted by

(4.1) Ak = {akj}
nk
j=1, k = 1, 2, . . . , nl.

At each level k, the aggregates are represented by the following binary matrices:

(4.2) πkij =

{
1 if i ∈ akj
0 otherwise

i = 1, . . . , nk−1, j = 1, . . . , nk,

where nk is the number of aggregates at the level k and n0 = n is the number
of original degrees of freedom (dofs). The above operator allows to map vectors
associated with a coarse set of dofs 1, 2, . . . , nk (the aggregates) on the finer set of
dofs 1, 2, . . . , nk−1. At the finest level, we have A1 = {a1j}

n1
j=1, where a1j stands for

aggregate of fine-level dofs and n1 is the number of aggregates. The corresponding
mapping operator is π1 ∈ Rn×n1 . The second assumption is that we have several
fine-level samples of smooth vectors, {wr}nw

r=0, that we will use to build a coarse-level
vector space defined as Range(P 1). These sample vectors can be computed by the
application of the bootstrap procedure described in Algorithm 1.

Let k = 1 be and let wr|a1j be the L2 orthonormal projection of wr on the aggregate

a1j , we can write a rectangular matrix Pa1j =
[
w0|a1j , . . . , wnw |a1j

]
, which is of size
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na1j × (nw + 1), where na1j > (nw + 1) is the size of the aggregate a1j . After forming

Pa1j , we seek a local basis of the set of the given smooth vectors on the aggregate a1j
by performing a SVD of Pa1j which gives:

(4.3) Pa1j = Ua1j Σa1j
V T
a1j
,

where Ua1j = [u0, . . . ,unw ] has orthogonal columns and Σa1j
is the (nw + 1)× (nw + 1)

diagonal matrix with the singular values on its main diagonal σ0 ≥ σ1 . . . ≥ . . . σnw ≥
0.

After neglecting possible near-zero singular values of Σ, σn′w , . . . σnw ≤ TOLa1j ,

where TOLa1j is a given threshold for aggregate a1j , we use the first n
′
w left singu-

lar vectors, i.e., the first n
′
w columns of Ua1j , to form a block P̃a1j of the following

interpolation matrix:

P 1 = blockdiag(P̃a11 , . . . , P̃a1n1
),

where P̃a1j = [u0, . . . ,un′w−1
]. Note that P 1 has orthogonal columns since each block

P̃a1j has orthogonal columns, i.e., P̃ T
a1j
P̃a1j = I, and the same holds for P 1, i.e.,

(P 1)TP 1 = I. Therefore, by applying a standard Galerkin approach, we can compute
a coarse-level matrix A1 = (P 1)TAP 1. By construction, P 1 is a piecewise-constant
interpolation operator, whose sparsity pattern is completely defined by the aggre-
gates. The vector space Range(P 1) defines a coarse-level space which includes a set
of smooth error samples of the given problem. We observe that the number n

′
w of

the left singular vectors in (4.3), chosen as local basis of the smooth vectors for each
aggregate, can be different for each aggregate, and the new coarse set of dofs has final
dimension nc =

∑n1

j=1 n
′
w.

4.1. Extension to the multi-level version. We can iterate the above process for
each new level k = 2, . . . , nl of the hierarchy of aggregates in (4.1), generating a
hierarchy of block prolongators P k, k = 1, . . . , nl and respective coarse matrices Ak.

We observe that, for moving at a second coarse level it is needed to define a new
binary transfer operator to map vectors from the first-level coarse set of dofs to the
second-level set of dofs in (4.1), which is represented by the operator π2 in (4.2). To
this aim we define the matrix Q ∈ Rnc×n1 with the following entries:

Qij =

{
1 if i ∈ a1j
0 otherwise

i = 1, . . . , nc, j = 1, . . . , n1,

so that we can move at the second level of a new hierarchy by using the composite
transfer operator Qπ2 ∈ Rnc×n2 . Similar transfer operators can be defined at each
new level of the new hierarchy.

For each new level k = 2 . . . , nl, we consider as current-level smooth vectors the pro-
jection on the coarser level of the original r smooth vectors, wk

r = (P k)T . . . (P 1)Twr,
r = 0, . . . , nw.

The setup of each new prolongator operator requires a number of nk small and dense
SVD computations, where nk is the number of aggregates at each level. Therefore,
using a very aggressive coarsening by merging an arbitrary large number of basic
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pairwise aggregates reduces the number of SVD computations at each level, although
it increases the number of rows of each small matrix Pakj . However, it is worth noticing

that SVD computations are completely independent on each aggregate, i.e., this part
of the setup phase can be beneficial for parallel implementation.

The number of sample smooth vectors is another parameter of our method and
increasing the number of sample smooth vectors generally improves the convergence
(see Section 5). On the other hand, this increase requires that Algorithm 1 has to be
applied for a larger number of iterations to estimate the needed smooth vectors and
further it leads to larger SVD computations and to denser coarse matrices. Therefore,
increasing the number of sample smooth vectors results in larger cost both for the
setup and for the application of the final AMG method. We show that a good trade-off
between the size of aggregates and the number of the smooth vectors, depending on
the problem dimension, can lead to reliable AMG methods with reasonable operator
complexity whose application in difficult problems is efficient and scalable.

Our procedure to compute the interpolation operator for multiple sample of smooth
errors has some analogy with the method proposed in [9]. In that case, sample of
smooth vectors are obtained during the AMG setup algorithm by applying a number
of relaxation steps to the linear systems Ak−1x = 0 for each new level k = 1, . . . nl−1.
Relaxation starts from a random vector at the finest level, while it starts from block
vectors formed with blocks Σakj

V T
akj

obtained by the SVD in (4.3) for the aggregate ajk at

the successive levels. Our method differs from the method proposed in [9] also in the
way it constructs the aggregates. In [9] the author applies the aggregation scheme
proposed in [28], using a measure of strength of connection among the variables,
coupled with block prolongators based on interpolation of local basis for multiple
vectors, with the final aim to represent more low-energy vectors further than the
near-null space vector in the coarse space within a smoothed aggregation approach.

Here we adopt coarsening in which aggregates of arbitrary large dimension are
obtained without referring to any standard measure of strength of connection among
the variables well understood only for M−matrices. Dimensions of the aggregates are
only related to the size of the original problem and the performance requirements.
Indeed final computational complexity of the preconditioner is the result of a trade-off
between size of aggregates and number of smooth vectors to be projected on them.
No smoothing is applied to the final block prolongator to avoid further increase in
the complexity of the final preconditioner. We refer to the thus modified method
as single-hierarchy multiple-vector aggregation-based AMG. Observe that after the
generation of the algebraically smooth vectors, we have available several hierarchies
of pairwise aggregates (each one corresponding to one of the vectors), and we could
use any of them as starting set for the new aggregation to fit the multiple vectors. In
our experiments, we used the hierarchy computed at the last bootstrap stage which
we found most appropriate.

5. Numerical results

In the present section we show results from implementing the single-hierarchy
multiple-vector aggregation-based AMG method discussed in this paper and compare



IMPROVING SOLVE TIME OF ADAPTIVE AMG 9

it with our previously developed bootstrap AMG method, which is based on com-
patible matching as described in detail in the previous sections. The comparison is
done in terms of solve time, operator complexity (reflecting memory usage) and al-
gorithmic scalability, all described in more details below. The methods are tested as
preconditioners in the Conjugate Gradient (CG) method. For a given linear system,
we set the unit vector as right-hand side and start with zero initial guess, Iterations
are stopped when the euclidean norm of the residual is reduced by a factor of 10−6

or a maximum number of iterations itmax = 1000 is reached.
The runs have been carried out on one core of a 2.6 GHz Intel Xeon E5-2670,

running the Linux 2.6 kernel with the GNU compiler version 4.9. Release 5.0 of
SuperLU [23] is used for computing the LU factorization and triangular system solu-
tions of the coarsest level systems of equations. We use the Sparse Parallel Robust
Algorithms Library (SPRAL) [18], implementing an auction-type algorithm, for com-
putation of approximate maximum product matchings. The latter is in the core of
our coarsening based on compatible weighted matching.

The algebraically smooth vectors {wr} are generated by the original bootstrap
described in Algorithm 1, starting from the initial smooth vector w0 = 1. Note
that we obtain very similar results also by starting from a random vector on which
a sufficiently large number (e.g., 20) of symmetrized Gauss-Siedel relaxation steps is
applied. The parameters of the bootstrap AMG algorithm are optimized to minimize
the complexity of each cycle by balancing the coarsening factor achieved by merging
two pairwise aggregation steps. For the actual details we refer to the implementation
of our BootCMatch code described in detail in [13]. For the test cases discussed in this
paper the new method composes three consecutive prolongators of the first hierarchy
built by the original bootstrap in order to have sets of (sufficiently large) aggregates
of size at most 64. All the AMG components, in the setup phase of the original
bootstrap are applied as K-cycles (i.e., nonlinear AMLI cycle MG, see, § 10.4 in [29]),
with two inner iterations of flexible CG at each level but the coarsest one, in order to
compensate for the unsmoothed aggregation and have good convergence components.
The forward/backward Gauss-Seidel (GS) relaxation is used as pre-/post-smoother
at all levels but the coarsest one, where a direct method is employed. The other
characteristics of the bootstrap AMG are as follows:

(i) we use the symmetrized multiplicative version, i.e, at stage r, we apply ν-times
(I −B1A) . . . (I −BrA)(I −BrA) . . . (I −B1A) to a random vector;

(ii) the number of steps at every stage was ν = 15;

The above choices were experimentally found (in [13]) to lead to good trade-off be-
tween accuracy for computing the rth smooth vector wr and the computational cost.
For the computation of the blocks P̃akj of the new multiple-vector prolongator after

SVD computations of Pakj , we use the left singular vectors such that the corresponding

singular values are larger than TOLakj = TOL ∗ (size(akj )/size(A)), with TOL = 0.1.

The final single-hierarchy multiple-vector aggregation-based AMG method is applied
as a standard V-cycle to compensate the increasing operator complexity due to the
use of multiple smooth vectors.
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The following characteristics of the resulting single-hierarchy AMG method are
reported in the Tables:

• number of levels nl;
• operator complexity:

opc =

∑nl−1
k=0 nnz(Ak)

nnz(A0)
,

where Ak is the matrix at level k (k = 0 corresponds to the fine level) and
nnz(Ak) is the number of nonzeros of Ak; it gives information about the
storage required by the operators of the AMG hierarchy as well as gives an
estimate for the computational complexity in a standard V-cycle.
• average coarsening factor defined as:

cr =
1

nl

nl∑
k=1

n(Ak−1)

n(Ak)
,

where n(Ak) is the size of Ak;
• tb: the setup time in seconds, needed for building the AMG hierarchy;
• mvtb: the part of tb needed for computing the hierarchy of block-diagonal

prolongators P k and related coarse matrices, which also includes the time for
creating large aggregates and the time for performing local SVD needed to
extract linearly independent subset from the smooth vectors restricted to the
current-level individual aggregates;
• ρ: an estimate of the convergence factor.

Number of iterations (nit) and execution time in seconds (ts) for the application of
the preconditioned CG are also shown. We did experiments for increasing number
of samples of smooth vectors (nsv) from 3 till 10,and generally report results when
the corresponding single-hierarchy AMG shows solve time smaller than the original
bootstrap AMG (see b-it and b-ts for number of iterations and solve times of the
original bootstrap AMG). The original bootstrap AMG was applied in the default
conditions, i.e., by using double pairwise unsmoothed aggregation coupled with K-
cycle and symmetrized multiplicative composition of the AMG components. All the
other algorithmic choices are the same as in the new method. The bootstrap process
ends either when the composite AMG reaches a convergence factor less than ρdes = 0.8
or when a maximum number of 15 components are built.

5.1. Anisotropic Diffusion. We started our analysis with test cases arising from
the following anisotropic 2D PDE on the unit square coupled with homogeneous
Dirichlet boundary conditions:

−div(K ∇u) = f,

where K is the coefficient matrix

K =

[
a c
c b

]
, with

 a = ε+ cos2(θ)
b = ε+ sin2(θ)
c = cos(θ) sin(θ)
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The parameter 0 < ε ≤ 1 defines the strength of anisotropy in the problem, whereas
the parameter θ specifies the direction of anisotropy. In the following we discuss re-
sults related to test cases with ε = 0.001 and θ = 0, π/8, which we refer to as ANI1
and ANI2, respectively. The problem was discretized using the Matlab PDE tool-
box, with linear finite elements on (unstructured) triangular meshes of three different
sizes (168577, 673025, 2689537), obtained by uniform refinement. It is well known
that the near-kernel of the above problems has dimension 1 and includes the unit
vector, then we expect that our single-hierarchy multiple-vector AMG shows good
convergence already for a small number of additional smooth vectors. On the other
hand, the original method performs very well also by using a single-hierarchy built
on the base of the unit vector (see results in [13], Table 3), indeed using bootstrap
improves convergence rate at the cost of an increase both in setup and in solve time.
We show here that using the new multi-vector single-hierarchy AMG allows further
improvement in solve time with respect to the original AMG when no bootstrap is
applied.

In Tables 1-2, we show results for increasing problem size and for increasing samples
of smooth vectors. We observe that adding few samples of smooth vectors to the
starting unit one leads to an improvement in convergence rate and to a consequent
reduction of iteration numbers and solve time, while for a number of smooth vectors
larger than 6 the convergence rate of the new method stabilizes. The best solve time
is obtained when 5 total vectors are used for the smallest and medium size problems
and when 6 vectors are used for the largest size, corresponding to AMG with a total
operator complexity not larger than 2. In about all cases reported in Table 1, solve
time of the new method are also better than the original single-hierarchy AMG when
no bootstrap is used and K-cycle is applied (see results in [13], Table 3).

As expected, increasing number of smooth vectors leads to an increase of operator
complexity with a corresponding decrease in the coarsening ratio, due to prolonga-
tors having more columns and then producing larger coarse matrices. Furthermore,
setup time of the new method increases for increasing number of smooth vectors.
It includes the time to generate smooth vectors by bootstrap and the time for SVD
computations needed to build linear independent projections of the smooth vectors on
the aggregates. We observe that for a fixed number of smooth vectors the percentage
of SVD computations with respect to the total setup times increases for increasing
matrix sizes, indeed for aggregates of a fixed size (at most 64, in our experiments),
the number of aggregates at each level increases with matrix size. On the other hand,
when the number of smooth vectors increases, the percentage of SVD computations
on the total setup time decreases. This behavior is clearly illustrated for the ANI1
test case in Fig. 1, where we describe the total setup time (tb) defined as the sum
of the time spent in the bootstrap process needed for generating the smooth vectors,
and the time spent in the SVD and in building the new multi-vector prolongators
(mvtb). It is worth noting that SVD and the setup of the multi-vector prolongators
are local (aggregate-by-aggregate) and hence embarrassingly parallel, and that cost
can be amortized for multiple r.h.s. We finally note that the original bootstrap AMG
needs to generate 6, 7 and 8 hierarchies to reach the desired convergence rate, requir-
ing setup times equal to 16.70, 99.72 and 569.66 for the three problem sizes reported
in Table 1, respectively. Therefore, in the cases of using 3 and 4 smooth vectors,
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Table 1. ANI1 test case for increasing size.

Setup Solve

nsv nl opc ρ cr tb (mvtb) nit ts

n=168577 b-it=15 b-ts=4.25

3 3 1.46 0.91 7.49 11.95 (6.55) 74 2.18
4 3 1.72 0.89 6.16 17.96 (9.51) 50 1.77
5 3 2.04 0.88 5.29 25.26 (13.04) 36 1.44
6 3 2.42 0.87 4.65 34.65 (17.88) 34 1.74
7 3 2.85 0.86 4.20 45.67 (23.69) 31 2.05
8 3 3.36 0.85 3.82 55.91 (28.24) 28 1.83
9 3 3.89 0.84 3.56 69.64 (35.32) 27 2.22
10 3 3.40 0.85 3.81 80.7 (36.84) 30 2.25

n=673025 b-it=19 b-ts=28.22

3 3 1.38 0.91 8.47 78.58 (54.62) 111 13.53
4 3 1.60 0.90 7.13 118.45 (80.83) 72 10.78
5 3 1.86 0.89 6.22 167.86 (113.51) 47 8.20
6 3 2.07 0.88 7.25 153.42 (79.82) 51 8.32
7 3 2.54 0.87 5.13 329.71 (232.04) 36 11.46
8 3 2.94 0.85 4.76 382.43 (259.12) 34 11.06
9 3 3.41 0.85 4.47 472.30 (319.80) 33 12.60
10 3 2.99 0.85 4.71 630.55 (351.56) 37 14.46

n=2689537 b-it=22 b-ts=168.21

3 3 1.32 0.91 13.65 341.23 (235.46) 202 101.30
4 3 1.51 0.90 12.17 550.90 (382.48) 197 140.94
5 3 1.73 0.89 11.25 764.42 (522.16) 141 112.08
6 3 2.00 0.88 10.63 989.91 (662.49) 81 57.14
7 3 2.31 0.88 10.17 1452.66 (987.20) 73 73.75
8 3 2.66 0.87 9.82 1696.49 (1138.66) 68 78.29
9 3 2.32 0.88 9.94 3570.05 (1122.38) 67 67.69
10 3 2.68 0.87 9.63 3998.39 (1460.57) 68 79.50

the new method shows total times which are smaller than the total time of the built
bootstrap AMG, with significant memory savings. More specifically, for the largest
size matrix, the operator complexity of the hierarchy obtained with 4 vectors is 1.51,
while the original bootstrap AMG shows average operator complexity of about 1.4
for all hierarchies; therefore, in the case of 4 hierarchies built employing the first 4
vectors, the original bootstrap requires a memory increase of a factor about 5.6 with
respect to the memory needed for the system matrix and shows a convergence rate
of about 0.91, corresponding to solve time of 250.94 and 57 iterations. In conclusion,
using the multiple-vector prolongators allows us to obtain a single-hierarchy that, ap-
plied as a simple V-cycle, has convergence rate, memory requirements and total time
better than the composite bootstrap AMG with the same number of smooth vectors
and shows a moderate increase of iteration number when the problem size increases.
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Figure 1. ANI1: Setup time of the single-hierarchy multiple-vector AMG

On the other hand, further reduction of solve time can be obtained at the expense of
an increase in setup times and a moderate increase in memory requirements.

In Table 2 we have similar results for the more challenging ANI2 test case, with
anisotropy direction not aligned with Cartesian axes. In this case, the best solve time
is obtained when 5, 6 and 7 smooth vectors are employed for the three matrix size,
respectively. On the other hand, the original bootstrap AMG requires 6, 8 and 9
hierarchies to reach the desired convergence rate, with setup times equal to 16.59,
125.17 and 843.34 for the three problem sizes, respectively. Therefore, for the largest
matrix size, the new method is able to obtain a total time smaller than the original
bootstrap AMG by using 3 to 6 smooth vectors with a largely significant memory
savings. Indeed, in the case of 6 hierarchies, the bootstrap AMG which also in this
test case shows average operator complexity of about 1.4 for all hierarchies, requires
a memory increase by a factor of about 8.4 with respect to the memory needed for
the system matrix, showing a convergence rate of about 0.87 and solve time of 294.53
for 37 iterations, while the new multiple-vector AMG with 6 smooth vectors shows
an operator complexity less than 2 which is a significant improvement.
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Table 2. ANI2 test case for increasing size.

Setup Solve

nsv nl opc ρ cr tb (mvtb) nit ts

n=168577 b-it=16 b-ts=4.49

3 3 1.46 0.90 7.52 11.84 (6.50) 86 2.46
4 3 1.71 0.89 6.20 17.74 (9.33) 50 1.70
5 3 2.03 0.88 5.32 24.98 (12.86) 42 1.58
6 3 2.41 0.87 4.6 34.32 (17.69) 40 1.88
7 3 2.84 0.86 4.21 44.38 (22.62) 32 1.81
8 3 3.33 0.84 3.84 56.57 (28.95) 28 1.96
9 3 2.91 0.85 4.15 67.65 (30.51) 33 2.28
10 3 3.41 0.84 3.79 80.28 (36.49) 26 1.78

n=673025 b-it=15 b-ts=25.14

3 3 1.38 0.91 8.49 78.36 (54.60) 124 15.01
4 3 1.60 0.90 7.10 116.63 (79.41) 70 9.58
5 3 1.86 0.89 6.22 165.00 (111.37) 58 9.26
6 3 2.17 0.87 5.60 225.68 (152.23) 42 8.31
7 3 2.54 0.86 5.11 296.39 (200.01) 40 10.04
8 3 2.94 0.86 4.76 376.26 (254.11) 42 12.97
9 3 2.56 0.87 5.08 503.14 (258.15) 46 15.12
10 3 2.99 0.86 4.71 581.16 (307.72) 42 11.69

n=2689537 b-it=19 b-ts=237.85

3 3 1.32 0.91 13.61 341.69 (236.76) 214 107.48
4 3 1.50 0.90 12.16 512.53 (347.35) 193 104.86
5 3 1.73 0.90 11.33 717.12 (479.33) 137 81.51
6 3 1.99 0.89 10.70 1006.93 (663.61) 96 78.21
7 3 2.30 0.88 10.14 1280.30 (853.87) 74 57.49
8 3 2.66 0.88 9.80 1654.71 (1073.02) 65 61.08
9 3 2.32 0.88 9.97 3640.83 (1229.98) 79 78.90
10 3 2.68 0.88 9.62 4063.48 (1522.22) 77 87.18

5.2. Linear elasticity. In this section we discuss results for test problems arising
from discretization of the Lamé equations of linear elasticity:

µ∆u + (λ+ µ)∇(divu) = f x ∈ Ω ⊂ Rd,

where u = u(x) is the displacement vector, Ω is the 3d spatial domain illustrated in
Fig. 2, and λ and µ are the Lamé constants. It is well-known that, when λ >> µ, i.e.,
when the material is nearly incompressible, the problem becomes very ill-conditioned.
We consider Lamé equations on a long beam having an aspect ratio of 1:8, charac-
terized by µ = 0.5 and two different values of λ1 = 7, λ2 = 10, corresponding to two
test cases of increasing conditioning; one side of the beam is considered fixed and the
opposite end is pushed downward, i.e., mixed Dirichlet and traction-type conditions
are applied (see Fig. 2). The problem was discretized with linear finite elements on
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Figure 2. Linear elasticity test case: mesh geometry (left); sparsity
pattern of the system matrix (right)

tetrahedral meshes, using the software package MFEM [21]; different problem sizes
were obtained by uniform refinements. More specifically, for each test case, three
different sizes are considered (15795,111843, 839619). We applied a node-based [26]
discretization of the above PDE, where at each mesh point all scalar components of
the displacement vector are grouped together. The above ordering leads to systems of
equations whose coefficient matrix is s.p.d. and have small block entries of dimension
3×3. We referred to the system matrices as LE1 and LE2, corresponding to the two
increasing values of λ, respectively.

We observe that AMG methods, when applied to vector equations, employ ordering-
aware coarsening schemes and relaxation methods to be effective [27, 7]. Furthermore,
the construction of efficient AMG for linear elasticity relies on a priori knowledge of
the rigid body modes (6 vectors in 3d problems), and requires that they are well
represented on all coarse levels (see e.g., [7]). Some other efficient AMG methods
for finite element discretization of linear elasticity problems, namely AMG using
element interpolation (AMGe) and its variants, require access to the fine-grid element
matrices [19, 8, 20, 22]. As we have demonstrated in a previous publication ([13])
our bootstrap AMG is able to successfully handle the elasticity equations without
using any a priori information on the rigid body modes and with no information
on the discretization mesh and/or ordering. In what follows, as we can see from
Tables 3-4, our modified single-hierarchy AMG does as well. Additionally, it shows
superior performance than the original multiple-component bootstrap AMG, which
will become evident after a closer look at the tables.

In the case of LE1, the original bootstrap AMG generates 9, 11 and 14 smooth
vectors and setup times equal to 14.94, 190.13 and 2900.51, for the three problem
sizes, respectively. As expected, for these vector linear systems arising from linear
elasticity, a larger number of smooth vectors are needed to obtain a multiple-vector
AMG with good convergence and smaller solve time than the original bootstrap. On
the other hand, increasing smooth vectors generally improves convergence rate and
for the smallest size matrix, the new method obtains a convergence rate less than
the original bootstrap already employing 8 vectors. The best solve time are obtained



16 PASQUA D’AMBRA AND PANAYOT S. VASSILEVSKI

Table 3. LE1 for increasing size.

Setup Solve

nsv nl opc ρ cr tb (mvtb) nit ts

n=15795 b-it=14 b-ts=2.01

4 2 1.62 0.90 6.92 4.77 (0.62) 96 1.67
5 2 2.03 0.87 5.63 7.02 (0.99) 62 1.33
6 2 2.49 0.86 4.62 9.75 (1.49) 42 1.14
7 2 3.07 0.81 4.03 12.76 (1.96) 28 0.83
8 2 3.45 0.77 3.49 16.09 (2.52) 23 0.82
9 2 3.98 0.73 3.18 19.93 (3.26) 18 0.75
10 2 4.51 0.73 2.99 23.96 (3.97) 16 0.75

n=111843 b-it=12 b-ts=20.33

6 3 2.49 0.88 2.49 95.65 (19.52) 92 19.46
7 3 3.07 0.87 3.07 128.05 (28.18) 68 17.90
8 3 3.70 0.85 3.70 161.45 (35.42) 47 14.35
9 3 4.41 0.83 4.41 201.50 (46.61) 36 13.22
10 3 4.83 0.81 4.83 242.37 (56.07) 27 11.30

n=839619 b-it=14 b-ts=314.50

5 3 2.00 0.89 8.91 701.71 (187.26) 206 301.70
6 3 2.48 0.88 7.98 965.97 (264.77) 148 260.90
7 3 3.04 0.87 7.38 1286.28 (367.85) 106 226.00
8 3 3.64 0.86 6.85 1631.67 (472.07) 76 189.27
9 3 4.38 0.84 6.48 2038.73 (604.47) 59 173.53
10 3 5.12 0.83 6.20 2503.55 (761.74) 46 158.93

by using 9 vectors for the small size matrix, while using 10 smooth vectors for the
medium and largest matrix improves both convergence rate and solve time.

Also in this case, for all problem sizes we can obtain a single-hierarchy AMG with
smaller total times than the original bootstrap AMG by a suitable choice of the
number of smooth vectors. On the other hand, if we look at the problem with the
largest size, the new method, employing 10 smooth vectors is already able to obtain
total time much smaller than the original bootstrap AMG with a significant reduction
in memory requirements. Indeed, the bootstrap AMG with the desired convergence
rate (0.8) has an average operator complexity of about 1.4 for all hierarchies, then
with its 14 built hierarchies requires a memory increase of a factor about 20 with
respect to the memory needed for the system matrix, while the new multiple-vector
AMG with 10 smooth vectors shows an operator complexity less than 5.2. On the
other hand, the original bootstrap using only 10 hierarchies (and corresponding 10
smooth vectors) shows a convergence rate of about 0.96 and solve time of 2066.31 for
102 iterations.

In Fig. 3 we again describe the total setup time (tb) showing the percentage spent
in generating the smooth vectors and that spent in SVD and in building the new
multi-vector prolongators (mvtb). The general behavior is the same as in the ANI
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test cases. On the other hand, as expected, the time spent in the bootstrap procedure
needed for generating the smooth vectors has a larger impact on the overall setup time
for the LE test cases. Indeed in 3d PDE problems we have denser matrices at each
level of the hierarchy which results in a more expensive application of each step of
the bootstrap process, whereas we observe that using the new single-hierarchy multi-
vector AMG allows to obtain better solve time than the original bootstrap AMG
already using a small number of smooth vectors. Finally, in the case of LE2 case,

Figure 3. LE1: Setup time of the single-hierarchy multiple-vector AMG

the original bootstrap AMG generates 11, 12 and 12 smooth vectors and setup times
equal to 19.92, 222.05 and 2252.99, for the three problem sizes, respectively. The
general behavior is similar to the previous test cases, confirming a very significant
reduction of memory requirements and solve times of the new method with respect to
the original bootstrap. In this more complex case we can observe that for increasing
matrix size, the gain in solve time of the new method with respect to the original
bootstrap appears also more significant for increasing number of smooth vectors.

We point out that we test some popular AMG methods on the above linear elas-
ticity test cases and our experiments show that AGMG [25] has a divergent behavior,
while BoomerAMG [17] needs unknown-based discretization for convergence, while
our approach is completely algebraic and independent of a priori information on the
problem and of the discretization.
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Table 4. LE2 for increasing size.

Setup Solve

nsv nlev opc ρ cr tb (mvtb) nit ts

n=15795 b-it=11 b-ts=1.95

5 2 2.04 0.89 5.64 7.07 (1.00) 85 1.82
6 2 2.47 0.86 4.74 9.55 (1.33) 58 1.42
7 2 3.01 0.84 4.05 12.67 (1.96) 40 1.20
8 2 3.65 0.85 3.56 15.97 (2.52) 30 1.05
9 2 4.37 0.84 3.17 20.20 (3.59) 24 1.04
10 2 4.94 0.76 2.94 24.37 (4.36) 22 1.07

n=111843 b-it=11 b-ts=20.36

9 3 4.61 0.86 3.95 205.79 (50.27) 48 18.76
10 3 5.89 0.85 3.68 258.84 (70.75) 39 19.03

n=839619 b-it=45 b-ts=910.09

4 3 1.70 0.91 10.41 489.30 (131.99) 432 594.90
5 3 2.18 0.90 9.00 725.84 (205.60) 283 450.58
6 3 2.65 0.90 8.02 995.69 (284.81) 177 335.45
7 3 3.22 0.89 7.39 1323.90 (393.11) 125 283.76
8 3 3.84 0.88 6.91 1683.30 (506.05) 83 222.01
9 3 4.65 0.87 6.55 2111.70 (657.24) 64 203.13
10 3 5.64 0.86 6.17 2613.75 (849.79) 51 192.23

6. Conclusions

In this paper we proposed a modification of a bootstrap AMG aimed to improve the
computational costs in the solution phase of the resulting AMG. This is achieved by
an aggressive coarsening algorithm which incorporates multiple algebraically smooth
vectors generated by the original bootstrap algorithm, in a single hierarchy employing
sufficiently large aggregates. These aggregates are in turn compositions of aggregates
already built throughout the original bootstrap algorithm. We have shown that the
new single-hierarchy multiple-vector aggregation-based AMG method has an overall
better efficiency both in terms of memory and solve times. This is demonstrated on
a class of linear systems arising from discretization of scalar and vector PDEs. The
capability of the new method of defining aggregates of arbitrary size and by choosing
an arbitrary number of samples of the created smooth vectors for the multiple-vector
interpolation operators provides flexibility to balance the trade-off between compu-
tational complexity and convergence properties for the resulting AMG, depending
on the specific application and computer platform features. Work in progress in-
volves the development of efficient parallel implementation of the code on multicore
computers, including also GPU accelerators. Furthermore, future work will focus on
reducing setup time needed to generate accurate estimation of sample of smooth vec-
tors by employing additive composition of the multiple components generated by the
bootstrap in order to enhance parallelism also in this phase.
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