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MODIFYING AMG COARSE SPACES WITH WEAK1

APPROXIMATION PROPERTY TO EXHIBIT APPROXIMATION IN2

ENERGY NORM∗3

XIAOZHE HU † AND PANAYOT S. VASSILEVSKI‡4

Abstract. Algebraic multigrid (AMG) coarse spaces are commonly constructed so that they5
exhibit the so-called weak approximation (WAP) property which is necessary and sufficient condition6
for uniform two-grid convergence. This paper studies a modification of such coarse spaces so that the7
modified ones provide approximation in energy norm. Our modification is based on the projection in8
energy norm onto an orthogonal complement of original coarse space. This generally leads to dense9
modified coarse space matrices which is hence computationally infeasible. To remedy this, based10
on the fact that the projection involves inverse of a well-conditioned matrix, we use polynomials11
to approximate the projection and, therefore, obtain a practical, sparse modified coarse matrix and12
prove that the modified coarse space maintains computationally feasible approximation in energy13
norm. We present some numerical results for both, PDE discretization matrices as well as graph14
Laplacian ones, which are in accordance with our theoretical results.15
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1. Introduction. Algebraic multigrid is one of the most successful methods for18

solving large-scale sparse systems of linear equations Au = f with symmetric positive19

definite (SPD) matrix A, especially for the case when A comes from finite element20

discretization of second order elliptic equations. AMG has also been extended to21

matrices arising from much broader classes of discretized PDEs (e.g., [24], the AMS22

and ADS solvers in [14], [15]) and even for non-PDE matrices (using adaptive AMG,23

see e.g., [4, 8]), including ones coming from network simulations (e.g. graph Laplacian,24

[20]). For an overview of some AMG methods, we refer to [28] and more recently25

to [29].26

Another important aspect of AMG, which is the main focus of this work, is that it27

provides a hierarchy of coarse spaces, which are natural candidates for dimension re-28

duction, sometimes referred to as numerical upscaling. There are quite a few literature29

on multigrid-based upscaling techniques, e.g., [11, 21, 23], and domain-decomposition-30

based upscaling approaches, e.g., [18, 26]. However, one difficulty, which needs to be31

overcome with such an approach, is that the traditional AMG coarse spaces can not32

guarantee the required approximation accuracy. More precisely, by the construction,33

traditional AMG coarse spaces only guarantee to possess a so-called weak approxima-34

tion property (WAP), i.e., for any vector u ∈ Rn, there exists a vector uc belonging35

to the coarse space, such that ‖u− Puc‖D ≤ ηw‖u‖A, where ‖u‖A :=
√

uTAu is the36

so-called energy norm and ‖u‖D :=
√

uTDu is the (weighted) `2-norm induced by a37

proper chosen SPD matrix D. The WAP is known to be necessary and sufficient for38

the uniform convergence of the two-level AMG methods (cf., e.g., [28]). However, to39
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use the same coarse space for dimension reduction, we need that the Galerkin projec-40

tion (projection with respect to energy norm ‖·‖A) onto the coarse space exhibit some41

approximation property. A sufficient condition is that the coarse spaces satisfy the42

so-called strong approximation property (SAP), i.e., the coarse-level solution should43

approximate the original (fine-level) solution with some guaranteed accuracy in en-44

ergy norm. Mathematically, the SAP means that, for any vector u ∈ Rn, there exists45

a vector uc belonging to the coarse space, such that ‖A‖‖u − Puc‖2A ≤ ηs‖Au‖2.46

Although the AMG coarse spaces do have approximation properties (by construction,47

in a weighted `2-norm), the coarse-level solution (i.e., the computationally feasible48

Galerkin projection) does not generally possess that, neither in (weighted) `2-norm49

nor in energy norm ‖·‖A. To the best of our knowledge, none of the existing multigrid-50

and domain decomposition-based upscaling techniques have the desired SAP property51

with provable satisfactory bound on the resulting constant ηs.52

In this paper, we address the issue that the usual AMG coarse spaces do not53

satisfy the SAP with provable satisfactory bound on the resulting constant ηs and54

develop an approach by extending a construction originated in [22] to our more gen-55

eral AMG upscaling setting. Our main contribution, which distinguish our result56

from all the existing results, is that our modified coarse space satisfies the SAP with57

provable satisfactory bound on the resulting constant ηs, which provides computable58

approximation to the fine-level solution in both the energy norm and (weighted) `2-59

norm. The proposed method simply modifies the AMG coarse space Range(P ) (P60

is the prolongation matrix which satisfies the WAP by construction/assumption) to61

Range((I − πf )P ) where πf is a projection onto the A-orthogonal complement of62

Range(P ) (i.e., orthogonal complement of Range(P ) with respect to the A inner63

product uTAv). We show that such modified coarse space provides a two-level A-64

orthogonal decomposition of the original fine-level solution u and, thereby, energy65

error estimate of the coarse solution. Moreover, the SAP of the coarse space can be66

derived based on such decomposition as well. Details of the construction of πf will be67

presented in Section 3. Because the definition of πf involves the inverse of a matrix68

(see Section 2.3 for details), such modification typically leads to dense coarse matrices69

which is mostly of theoretical interest. In order to design a more practical approach,70

we take advantage of the fact that A is well-conditioned on the A-orthogonal comple-71

ment of Range(P ) (which we prove holds for P satisfying the WAP) and, therefore,72

modifying the coarse spaces based on polynomial approximations to control the spar-73

sity of the respective coarse matrices is feasible. That is, we are able to modify the74

coarse space so that both, the SAP (hence the error estimate in the energy norm) and75

the sparsity of the coarse matrix, are satisfied. The energy error estimate improves76

when the polynomial degree increases (with the expense of increased matrix density).77

We present numerical results illustrating the effectiveness of the proposed method.78

We would like to point out that other computationally feasible AMG-type upscaling79

approaches were presented in [1] and [13] for problems that can be formulated in a80

mixed (saddle-point) form.81

The remainder of the paper is structured as follows. In Section 2, we introduce82

the WAP and formulate some properties of the matrices arising from the unsmoothed83

aggregation AMG. It provides the motivation for the construction of the improved84

coarse spaces which is presented in Section 3. The error analysis in the computa-85

tionally infeasible case with exact projections is presented in that section as well.86

The computationally feasible case with approximate projections, giving rise to the87

improved coarse space satisfying the SAP and with guaranteed approximation prop-88

erties is presented in Section 4. The case of elliptic problems with high contrast89
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coefficients is briefly discussed in Section 5. The numerical illustration of the pre-90

sented methods for both, PDE-type matrices and graph Laplacian ones, can be found91

in Section 6. Finally, some conclusions are drawn in the last Section 7.92

2. Weak approximation property in AMG. In this section, we recall the93

two-grid method and the weak approximation property that is widely used to prove94

the convergence of two-grid methods. We point out that the prolongation matrices P95

constructed in various AMG methods usually satisfy the WAP (a notion intoduced96

already in the original AMG paper, [2].97

We consider a SPD matrix A ∈ Rn×n and let D be another SPD matrix such98

that,99

(2.1) vTAv ≤ vTDv.100

A typical choice of D is the diagonal of A with proper scaling, i.e. D = ω−1 diag(A),101

ω ∈ R or the so-called “`1-smoother” (cf. e.g., [5]). We denote the norms induced by102

A and D by ‖ · ‖A and ‖ · ‖D, respectively.103

2.1. The two-grid method. First, we briefly recall the standard two-grid104

method. Assume we have a smoother M such as Jacobi, Gauss-Seidel, etc., a prolon-105

gation P , and the coarse-grid problem Ac = PTAP . Based on these standard com-106

ponents, we define the standard (symmetrized) two-grid method in Algorithm 2.1.107

Algorithm 2.1 Two-grid method

For a current iterate u, we perform:

1: Presmoothing: u← u +M−1(f −Au)
2: Restriction: rc ← PT (f −Au)
3: Coarse-grid correction: ec = A−1c rc
4: Prolongation: u← u + Pec
5: Postsmoothing: u← u +M−T (f −Au)

108

It is well-known that the two-grid method (Algorithm 2.1) leads to the composite109

iteration matrix ETG based on which we define the two-grid operator BTG as follow,110

I −B−1TGA = ETG = (I −M−TA)(I − PA−1c PTA)(I −M−1A).111

For the convergence rate of the two-grid method, we have the following two-grid112

estimates which can be found in Theorem 4.3, [10].113

Theorem 2.1. For BTG and the two-grid error propagation operator ETG, we114

have the sharp estimates115

vTAv ≤ vTBTGv ≤ KTGvTAv or equivalently ‖ETG‖A = ρTG := 1− 1

KTG
,116

where117

KTG = max
v

min
vc

‖v − Pvc‖2M̃
‖v‖2A

,118

and M̃ := MT (MT +M −A)−1M is the symmetrized smoother (starting with MT ).119
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2.2. The Weak Approximation Property. In AMG, we construct a prolon-120

gation P ∈ Rn×nc and the corresponding coarse space Range(P ) which exhibits the121

WAP. We note that the WAP is a necessary and sufficient condition for uniform two-122

level AMG convergence (e.g., [28]) and can be stated as, for any vector v ∈ Rn, there123

is a coarse vector vc ∈ Rnc , such that124

(2.2) ‖v − Pvc‖D ≤ ηw ‖v‖A,125

where ηw is the so-called WAP constant. By requiring that the smoother is spectrally126

equivalent toD, which can be verified for standard smoothers such as Gauss-Seidel and127

Jacobi, we can estimate the two-grid constant KTG based on the WAP. More precisely,128

we have KTG ≤ cη2w where the constant c here measures the spectral equivalence129

between M̃ and D. This implies that ρTG ≤ 1− 1
cη2w

, i.e., the corresponding two-grid130

method converges uniformly.131

In order to have a computationally feasible approach (which will become clear132

later on), in this paper, we follow [5, 27] and assume that P is constructed based on133

aggregation-based approach (without smoothing). Roughly speaking, we first form134

a set of aggregates {Ai}na
i=1, which is a nonoverlapping partitioning of the index set135

{1, 2, . . . , n}, i.e., ∪na
i=1Ai = {1, 2, . . . , n} and Ai ∩ Aj = ∅, if i 6= j. Moreover, we136

denote the size of Ai by nAi
which is defined by the cardinality of Ai. We then solve137

certain (generalized) eigenvalue problems locally to obtain the local basis {qcAi,j
}n

c
i
j=1138

for each aggregate Ai. The overall prolongation is defined as139

(2.3) P =


PA1

0 · · · 0

0 PA2
· · ·

...
...

...
. . .

...
0 · · · 0 PAna

 with PAi
= (qcAi,1, · · · ,q

c
Ai,nc

i
),140

and, naturally, the coarse space is just Range(P ). The WAP (2.2) can be shown by141

the properties of the local eigenvalue problems. We refer to [5, 27] for the details.142

We note that such local spectral construction of P (2.3) dated back to [3] and is also143

possible for graph Laplacian matrices (see, e.g., [12]).144

As already mentioned, a WAP of the above form is a necessary condition for145

uniform two-level AMG convergence, so we assume (2.2) to hold for a block-diagonal146

P and a diagonal D (scaled as in (2.1)).147

The assumptions on P and D imply that the matrix PTDP is sparse, actually it148

is block diagonal with each diagonal block corresponding to an aggregate Ai. Hence,149

it is easily invertible and the projection πD = P (PTDP )−1PTD is sparse, hence150

computationally feasible. Taking vc = (PTDP )−1PTDv in (2.2), we arrive at the151

following estimate, which is another way to present the WAP of the coarse space using152

the projection πD,153

(2.4) ‖v − πDv‖D ≤ ηw ‖v‖A.154

As already mentioned, the WAP plays an important role in the convergence anal-155

ysis of AMG methods. For example, we can derive two-level convergence rate directly156

from the WAP. However, in this paper, our goal is to take advantage of the WAP and157

modify the coarse space such that the modified one satisfies not only the WAP but also158

the so-called strong approximation property. Coarse spaces that satisfy the SAP with159

provable satisfactory bound on the constant can provide a coarse-level solution which160
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approximates the fine-level solution with guaranteed accuracy in energy norm, and,161

therefore, are important both theoretically (e.g., in the V-cycle convergence analysis)162

and practically (e.g., for upscaling).163

2.3. The A-Orthogonal Complement to Range(I−πD). Our modification of164

the coarse spaces (which will be presented in the next section) uses information from165

the orthogonal complement Range(I−πD). Therefore, in this subsection, we introduce166

how to construct a sparse linearly independent basis of the space Range(I − πD) and167

how to project a coarse vector onto it.168

The construction of the basis of the space Range(I−πD) is, of course, not unique.169

Here, we are looking for a sparse (locally supported) basis due to computational com-170

plexity considerations. In the case of aggregation-based AMG, this can be done171

as follows. On each aggregate Ai, we select nfi vectors, {qfAi,j
}n

f
i
j=1, which are or-172

thonormal with respect to DAi
:= D|Ai

and span the DAi
-orthogonal complement of173

Range(PAi
). Recall that nAi

is the size of the aggregates Ai and nci be the number174

of columns of PAi
, we choose nfi such that nAi

= nci + nfi . It is clear that the vectors175

qfAi,j
extended by zero outside Ai form a basis of Range(I − πD). Introducing the176

matrix P⊥ with the vectors qfAi,j
as its columns, then we have,177

(2.5) PT⊥DP = 0 and PT⊥DP⊥ = I.178

Exploiting the local basis of Range(I − πD), we project any given vector Pvc ∈179

Range(P ) onto the A-orthogonal complement of Range(I−πD) by solving the follow-180

ing problem: find vf ∈ Range(I − πD), such that181

(2.6) (wf )TAvf = (wf )TAPvc, ∀wf ∈ Range(I − πD).182

Since we have a sparse (computable) basis of Range(I − πD) represented by P⊥, we183

can rewrite (2.6) as the following linear system of equations,184

(2.7) Afvf = PT⊥APvc,185

where Af = PT⊥AP⊥ and vf = P⊥vf . By solving (2.7), we compute the projection186

vf = πfPvc. In fact, the matrix representation of πf is given by πf = P⊥A
−1
f PT⊥A.187

Note the inverse of Af is involved in the definition of πf .188

We next study the conditioning of Af with the goal to derive computationally189

feasible (sparse) approximations to its inverse within reasonable computational cost.190

We have the following main result.191

Theorem 2.2. If the coarse space Range(P ) satisfies the WAP with constant ηw,192

then the condition number κ(Af ) of Af satisfies κ(Af ) ≤ η2w.193

Proof. Choose v = vf := (I−πD)v in (2.4) and (2.1), which leads to the following194

spectral equivalence relations,195

1

η2w
vTf Dvf ≤ vTf Avf ≤ vTf Dvf , ∀vf ∈ Range(I − πD).196

Equivalently, letting vf = P⊥vf , using properties (2.5), we have197

(2.8)
1

η2w
vTf vf ≤ vTf Afvf ≤ vTf vf , ∀vf ,198

which implies that the condition number κ(Af ) of Af , satisfies κ(Af ) ≤ η2w, which is199

the desired result.200
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Remark 2.3. When the WAP constant ηw is bounded, especially independent of201

problem size, then Theorem 2.2 implies that Af is well-conditioned.202

Since Af is well-conditioned, A−1f can be accurately approximated by a matrix203

polynomial qν(Af ) of degree ν. Therefore, to approximate the solution of Afxf = ff ,204

we can use the representation205

xf = A−1f ff =
[(
A−1f − qν(Af )

)
ff + qν(Af )ff

]
.206

The first term on the right hand side above can be made as small as we want by207

choosing qν appropriately. More precisely, it can be made of order ε� 1 if we choose208

the polynomial degree ν = O(log ε−1) (cf., e.g., [9], or [28], p. 413). We give specific209

examples of polynomials qν(t) in Section 4. By dropping the first term, we get the210

approximation211

(2.9) xf ≈ qν(Af )ff .212

An important observation is that, if ff is locally supported (sparse), the above213

approximation can be kept reasonably sparse. In particular, consider (2.7), i.e.,214

ff = PT⊥APvc, and let vc be one of the unit coordinate vectors, then Pvc is a column215

of P and has local support represented by a corresponding aggregate A. Thus, such ff216

is locally support on A and its immediate neighbors. In this case, the approximation217

qν(Af )ff is supported locally. More precisely, its suport depends on the sparsity of218

Aνf , hence the diameter of the non-zero pattern of qν(Af )ff can be estimated to be219

of order ν times the size of the neighborhood of A and, therefore, can be kept under220

control when ν is kept small.221

The above approximation is the main motivation for our work. Roughly speaking,222

such approximation allows us to modify the original coarse space (with the WAP) so223

that the modified one satisfies the SAP while keeping the sparsity of the modified224

prolongation under control. In the next two sections, we first introduce the SAP225

result in the case of exact A−1f and then present the coarse space modification based226

on the computationally feasible polynomial approximation.227

3. The modified coarse space exhibiting the SAP. In this section we define228

the modified coarse space. The construction presented here goes back to [22]. In this229

paper, we adopt a matrix-vector presentation and motivate the applicability of the230

construction in [22] to our setting of aggregation-based AMG exploiting the well-231

conditionedness of Af proven in Theorem 2.2. Thereby, we extend the analysis in [22]232

to our more general (algebraic) setting by showing that the modified coarse spaces233

satisfy the SAP with provable satisfactory bound on the resulting constant ηs. In the234

following section, we extend these results to the case of approximate inverses.235

3.1. Modification of the Coarse Space. We first recall the projection πf =236

P⊥A
−1
f PT⊥A which plays an important role in the construction of the modified coarse237

space. We also recall the original coarse space given by Range(P ) = Range(πD).238

The modified coarse space of our main interest is simply Range((I − πf )πD), or239

equivalently Range((I − πf )P ). Naturally, the modified prolongation matrix takes240

the form (I − πf )P .241

Next, we show that we can obtain an A-orthogonal decomposition of any given242

vector u based on the modified coarse space, which in turn implies the SAP of our243

main interest. To this end, we first present some properties of the two projections πD244

and πf summarized in the following lemma.245
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Lemma 3.1. The projections πD and πf satisfy πDπf = 0. In addition, we have246

that (I − πf )πD is also a projection.247

Proof. πDπf = 0 can be directly verified by πD = P (PTDP )−1PTD and πf =
P⊥A

−1
f PT⊥A. Together with properties (2.5), we have

πDπf = P (PTDP )−1 (PTDP⊥)︸ ︷︷ ︸
=0

A−1f PT⊥A = 0.

On the other hand, using πDπf = 0 and also the fact that π2
D = πD, we have248

((I − πf )πD)
2

= (πD − πfπD)(πD − πfπD)249

= π2
D − πfπ2

D − (πDπf )πD + πf (πDπf )πD250

= πD − πfπD = (I − πf )πD,251252

which implies that (I − πf )πD is a projection.253

We are now ready to derive our main two-level A-orthogonal decomposition.254

Theorem 3.2. For a given u, there exists a v, such that255

(3.1) u = (I − πD)v + (I − πf )πDu.256

Also, the two components in the above decomposition are A-orthogonal.257

Proof. We begin with the following A-orthogonal decomposition258

(3.2) u = (I − πD)v + ξ, where ξ ∈ (Range(I − πD))
⊥A .259

Given a vc, from the definition of vf = πfPvc in (2.6), we have260

wT
f A(I − πf )Pvc = 0, for all wf ∈ Range(I − πD).261

The latter identity implies that the A-orthogonal complement (Range(I − πD))
⊥A of262

Range(I − πD) satisfies the relations263

(3.3) (Range(I − πD))
⊥A = Range ((I − πf )P ) = Range ((I − πf )πD) .264

This means that in (3.2), ξ = (I − πf )πDw for some w, hence the A-orthogonal265

decomposition (3.2) can be rewritten as follows,266

u = (I − πD)v + (I − πf )πDw.267

Finally, using Lemma 3.1 we have πDu = πD(I − πf )πDw = π2
Dw = πDw, which268

shows (3.1).269

The above A-orthogonal decomposition (3.1) basically provides an energy stable270

decomposition since271

‖u‖2A = ‖(I − πD)v‖2A + ‖(I − πf )πDw‖2A.272

This is essential in multilevel analysis. In the following subsections, we prove the SAP273

for the modified coarse space Range((I−πf )P ) and also establish our first main error274

estimates, all based on this decomposition.275
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3.2. The Strong Approximation Property. In this subsection, we show that276

the modified coarse space Range((I − πf )P ) satisfies the SAP with provable satisfac-277

tory bound on the constant ηs. To this end, for given f , we consider the solution u of278

the following linear system,279

(3.4) Au = f .280

The corresponding modified coarse problem (also known as the upscaled problem)281

reads282

(3.5) PT (I − πf )TA(I − πf )Puc = PT (I − πf )T f .283

In order to show the SAP, we are interested in estimating the error e = u−(I−πf )Puc284

in the energy norm ‖ ·‖A, more precisely, the estimate of ‖u− (I−πf )Puc‖A in terms285

of ‖f‖ = ‖Au‖. The main result is formulated in the following theorem.286

Theorem 3.3. Assume the WAP (2.2) holds. Let e = u−(I−πf )Puc be the error287

between the fine-level solution u of problem (3.4) and the upscaled (coarse) solution288

uc = (I − πf )Puc of (3.5). Then, the following energy error estimate holds:289

(3.6) ‖e‖A ≤ ηw‖D−
1
2Au‖.290

Proof. By the property of the Galerkin projection, we have that e = u − uc291

is A-orthogonal to Range((I − πf )P ) = Range((I − πf )πD) = (Range(I − πD))
⊥A .292

Therefore, using the decomposition (3.1), we have293

(3.7) e = u− uc = (I − πD)v, for some v.294

Since uc ∈ Range((I − πf )P ) = (Range(I − πD))
⊥A , we also have295

‖e‖2A = (u− uc)
TA(I − πD)v = (Au)T (I − πD)v ≤ ‖D− 1

2 f‖‖(I − πD)v‖D.296

Using the weak approximation property (2.4) for v := (I −πD)v = e, we then obtain297

‖e‖2A ≤ ‖D−
1
2 f‖ηw‖(I − πD)v‖A = ηw‖D−

1
2 f‖‖e‖A,298

which implies (3.6).299

From the energy error estimate (3.6), assuming that D is well-conditioned, we300

have the following corollary also known as strong approximation property.301

Corollary 3.4 (Strong Approximation Property). We have the following esti-302

mate303

(3.8) ‖A‖‖u− uc‖2A ≤ ‖D‖‖u− uc‖2A ≤ ηs ‖Au‖2,304

where ηs ≤ ‖D‖‖D−1‖η2w, which is referred to as the SAP constant. If D is well-305

conditioned, then ηs is bounded from above by a constant.306

As we have shown, the modified coarse space Range(I − πf )P satisfies the SAP307

with provable satisfactory bound on the constant ηs. However, we want to point out308

that, the practical usage of this modified coarse space is limited since πf involves309

A−1f which is dense in general. In Section 4, we discuss how to use the polynomial310

approximation (2.9) to modify the coarse space which can be used in practice with311

the SAP approximately satisfied.312
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3.3. A Weighted `2–Error Estimate. The estimate (3.6) allows us to prove313

an `2–error estimate, which is a direct application of the Aubin-Nitsche argument.314

Let e = u− uc be the error and consider the following linear system,315

Aw = De.316

We have,317

‖e‖2D = eT (De) = eTAw.318

Since e is A-orthogonal to the modified coarse space Range(I − πf )πD, we have, for319

wc = (I − πf )πDw ,320

‖e‖2D = eTA(w −wc) ≤ ‖e‖A‖w −wc‖A.321

Applying estimate (3.6) to the error ew := w −wc leads to322

‖e‖2D ≤ ‖e‖Aηw‖D−
1
2Aw‖ = ηw‖e‖A‖D

1
2 e‖ = ηw‖e‖A‖e‖D.323

This implies the desired weighted `2-error estimate stated below.324

Theorem 3.5. Let e = u − (I − πf )πDu be the error between the solutions of325

the original fine-level problem (3.4) and the upscaled one (3.5). Then, the following326

weighted `2–error estimate holds:327

(3.9) ‖e‖D ≤ ηw‖e‖A ≤ η2w‖D−
1
2Au‖.328

4. Modified coarse space using approximate inverses. In this section, we329

discuss how to use approximations to make the modified coarse spaces more practical.330

The basic idea is based on the well-conditioning of Af as shown in Theorem 2.2 which331

allows for uniform polynomial approximation (2.9). We argue that such an approx-332

imation keeps the sparsity of the modified prolongation matrix under control while333

maintaining the approximation properties of the modified coarse space reasonably334

well. These are properties that make the resulting modified coarse spaces appropriate335

for upscaling as well for efficient use in multigrid methods in practice.336

4.1. Modification via Polynomial Approximation. We begin with one pos-337

sible choice of polynomial approximation. Recall that according to (2.8), the spectrum338

of Af is contained in [1/η2w, 1] ⊂ (0, 1]. Therefore, we want to chose a polynomial pν339

of degree ν ≥ 1, such that pν(0) = 1 and tp2ν(t) has a small maximum norm over the340

interval t ∈ [0, 1]. One choice is the polynomial used in the smoothed aggregation341

algebraic multigrid (SA-AMG). It is defined via the Chebyshev polynomials of odd342

degree, T2ν+1, as follows:343

(4.1) pν(t) =
(−1)ν

2ν + 1

T2ν+1(
√
t)√

t
.344

As is well-known (e.g., shown in [6, 28, 12]), this polynomial has the following property345

(4.2) max
t∈(0,1]

√
t|pν(t)| = 1

2ν + 1
.346

Since pν(0) = 1, pν(t) = 1− tqν−1(t), where qν−1 is a polynomial of degree ν − 1.347

We actually use qν−1(t) to approximate A−1f , namely348

(4.3) A−1f ≈ Ã
−1
f ≡ qν−1(Af ).349
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By rewriting (4.3), we get350

I − Ã−1f Af = I − qν−1(Af )Af = pν(Af ).351

The Af -norm of this matrix can be made arbitrarily small as ν → ∞ by the prop-352

erty (4.2).353

Letting π̃f := P⊥Ã
−1
f PT⊥A, we define the modified prolongation matrix P̃ as354

follows,355

(4.4) P̃ := (I − π̃f )P.356

The corresponding modified coarse space is Range((I − π̃f )P ) = Range((I − π̃f )πD).357

Note that, if we choose ν properly (sufficiently large but fixed), the modified pro-358

longation matrix P̃ stays reasonably sparse and can be used in practice with nearly359

optimal computational cost.360

We notice that, the formula P̃ = (I − P⊥qν−1(Af )PT⊥A)P , somewhat resembles361

the construction of prolongation matrices used in SA-AMG. More specifically, in SA-362

AMG, we have P̃ := pν(D−1A)P . This observation offers the possibility to construct363

new SA-AMG methods by choosing simple P⊥ (for example, not necessarily spanning364

the entire complement of Range(P )) so that Af := PT⊥AP⊥ and hence the resulting365

P̃ and respective modified coarse level matrix P̃TAP̃ be reasonably sparse.366

Remark 4.1. We may also note that P̃ = (I − P⊥qν−1(Af )PT⊥A)P resembles the367

so-called approximate wavelet modified hierarchical basis (AWMHB) method where368

P⊥ (corresponding to the HB) is modified by polynomially based approximate L2-369

projections to exhibit better energy stability (cf. [25] or [28]).370

With the approximate modified coarse space, the two-level decomposition can be371

rewritten in the following perturbation form372

(4.5) u = (I − πD)v + (I − π̃f )πDu + (π̃f − πf )πDu.373

Obviously, we do not have A-orthogonality anymore. However, as we show later, the374

first two terms of the decomposition (4.5) are approximately A-orthogonal whereas375

the last term can be made small, which leads to the desired error estimates.376

4.2. Approximate Orthogonality. To show that the first two terms of the377

decomposition (4.5) are approximately A-orthogonal, we prove that the two spaces378

Range(P⊥) (= Range(I − πD)) and Range(P̃ ) (= Range((I − π̃f )πD)) are approxi-379

mately A-orthogonal. To this end, we first establish some properties of πD and π̃f380

summarized in the following lemma.381

Lemma 4.2. We have πDπ̃f = 0 and that (I − π̃f )πD is a projection.382

Proof. The proof is the same as the proof of Lemma 3.1.383

Remark 4.3. Lemma 4.2 actually holds for π̃f obtained by approximating A−1f384

with any Ã−1f in the definition of πf . Therefore, this allows us to use, for example,385

other polynomials, i.e., not only the SA polynomial (4.1).386

Next, we estimate the cosine of the abstract angle between the two spaces. For387
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any vectors vf and vc and use the property (4.2) of the SA polynomial (4.1), we have388

(4.6)

vTf P
T
⊥AP̃vc = vTf P

T
⊥A

(
I − P⊥Ã−1f PT⊥A

)
Pvc

=
(

(I −AP⊥Ã−1f PT⊥ )AP⊥vf

)T
Pvc

=
(
AP⊥(I − Ã−1f PT⊥AP⊥)vf

)T
Pvc

=
(
P⊥(I − Ã−1f Af )vf

)T
APvc

= (P⊥pν(Af )vf )
T
APvc

≤
√

vTf Afp
2
ν(Af )vf

√
vTc P

TAPvc

≤ maxt∈(0,1]
√
t|pν(t)| ‖vf‖‖Pvc‖A

≤ 1
2ν+1 ‖vf‖‖Pvc‖A.

389

Given w and v, consider Pvc = πDw and P⊥vf = (I − πD)v. Then, from (4.6) and390

use the facts that ‖vf‖ = ‖(I−πD)v‖D, ‖Pvc‖A = ‖πDw‖A, and P̃vc = (I−π̃f )πDw,391

to obtain392

(4.7) ((I − πD)v)TA(I − π̃f )πDw ≤ 1

2ν + 1
‖(I − πD)v‖D‖πDw‖A.393

From (2.1), the WAP (2.4), we have394

‖(I − πD)v‖A ≤ ‖(I − πD)v‖D ≤ ηw‖v‖A and395

hence by Kato’s Lemma ([28]),396

(4.8) ‖πD‖A = ‖I − πD‖A ≤ ηw.397

The latter estimates together with (4.7) imply,398

(4.9) ((I − πD)v)TA(I − π̃f )πDw ≤ η2w
2ν + 1

‖v‖A‖w‖A.399

This gives us the desired approximate A-orthogonality result stated below.400

Theorem 4.4. Assume the SA polynomial (4.1) is used to define π̃f , then the ap-401

proximate modified coarse space Range(P̃ ) (= Range((I−π̃f )πD)) and the hierarchical402

complement Range(P⊥) (= Range(I−πD)) of the original coarse space Range(P ) are403

almost A-orthogonal in the following sense,404

(4.10) ((I − πD)v)TA(I − π̃f )πDw ≤ η2w
2ν + 1

‖(I − πD)v‖A‖(I − π̃f )πDw‖A.405

Proof. Apply (4.9) for v := (I − πD)v and w := (I − π̃f )πDw and use the facts406

that both πD and (I − π̃f )πD are projections.407

4.3. Energy Error Estimate. The second result we prove is an energy error408

estimate using the approximate modified coarse space Range(P̃ ). We start with the409

following lemma which shows that the third term in the perturbed decomposition (4.5)410

is small.411

Lemma 4.5. Assume the SA polynomial (4.1) is used to define π̃f , then we have412

(4.11) ‖(π̃f − πf )πDu‖A ≤
η2w

2ν + 1
‖u‖A413
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Proof. Let πDu = Puc, and consider the deviation term414

(4.12)

‖(π̃f − πf )πDu‖A = ‖P⊥(Ã−1f −A
−1
f )PT⊥APuc‖A

= ‖A
1
2

f

(
(I − pν(Af ))A−1f −A

−1
f

)
PT⊥APuc‖

= ‖pν(Af )A
− 1

2

f PT⊥APuc‖
≤ ‖pν(Af )A

− 1
2

f PT⊥A
1
2 ‖‖Puc‖A

= ‖A 1
2P⊥A

− 1
2

f pν(Af )‖‖Puc‖A
= ‖pν(Af )‖‖Puc‖A.

415

For the SA polynomial (4.1), using the fact that λmin(Af ) ≥ 1
η2w

(see (2.8)) and416

‖πD‖A ≤ ηw, (4.8), we have417

‖(π̃f − πf )πDu‖A ≤ 1√
λmin(Af )

max
t∈[0,1]

√
t|pν(t)| ‖Puc‖A

≤ ηw
2ν+1 ‖Puc‖A

= ηw
2ν+1 ‖πDu‖A

≤ η2w
2ν+1 ‖u‖A,

418

which completes the proof.419

Consider the modified coarse problem based on the approximate inverse Ã−1f in420

P̃ , as follows421

P̃TAP̃ ũc = P̃T f .422

Let ũ = P̃ ũc ∈ Range(P̃ ) be the respective coarse (upscaled) solution. We have the423

following energy error estimate which is an extension of energy error estimate (3.6).424

Theorem 4.6. If pν is the SA polynomial (4.1), then the following energy error425

estimate holds426

(4.13) ‖u− P̃ ũc‖A ≤ ‖e‖A + ‖(π̃f − πf )πDu‖A ≤ ηw‖D−
1
2Au‖+

η2w
2ν + 1

‖u‖A,427

with the perturbation term (last term on the right hand side) exhibiting linear decay428

in ν.429

Proof. Since the coarse solution is the best approximation to the solution u of the430

original linear system (3.4) from the modified coarse space in the A-norm, we have431

‖u− P̃ ũc‖A = min
vc

‖u− P̃vc‖A.432

Note that (I − π̃f )πDu ∈ Range(P̃ ), then we have433

‖u− P̃ ũc‖A = min
vc

‖u− P̃vc‖A ≤ ‖u− (I − π̃f )πDu‖A.434

Hence, according to the decomposition (4.5) and e = (I − πD)v in (3.7), we have435

‖u−P̃ ũc‖A ≤ ‖u−(I−π̃f )πDu‖A = ‖e+(π̃f−πf )πDu‖A ≤ ‖e‖A+‖(π̃f−πf )πDu‖A.436

Then apply Theorem 3.3 to the first term and Lemma 4.5 to the second term, to437

arrive at (4.13).438
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Further, assume that D is well-conditioned, we have the following approximate439

the SAP, which is a perturbation of Corollary (3.4).440

Corollary 4.7. If pν is the SA polynomial (4.1), then441

‖A‖ 1
2 ‖u− P̃ ũc‖A ≤ ‖D‖

1
2 ‖u− P̃ ũc‖A ≤ η

1
2
s ‖Au‖+

ηw‖D‖
1
2

2ν + 1
‖u‖A.442

where ηs ≤ ‖D‖‖D−1‖η2w. If D is well-conditioned, then ηs is bounded above by a443

constant.444

4.4. Other Approximations. The SA polynomial (4.1) is just one possible445

choice for approximating A−1f . There are other possible choices as well. In this446

subsection, we briefly discuss other possibilities.447

If we have the WAP constant ηw explicitly available, that is, we have explicit448

eigenvalue bounds, λ(Af ) ∈ [α, β] ⊂ [ 1
η2w
, 1], we can use the (best) Chebyshev449

polynomial450

(4.14) pν(t) =
Tν

(
β+α−2t
β−α

)
Tν

(
β+α
β−α

) .451

Then due to the optimality property of Chebyshev polynomial,452

‖pν(Af )‖ ≤ 2qν

1 + q2ν
, q =

ηw − 1

ηw + 1
,453

together with the identity (4.12), we end up with the following error estimate.454

Theorem 4.8. If pν is the Chebyshev polynomial (4.14) used to define the ap-455

proximate modified coarse space Range(P̃ ), then the following energy error estimate456

holds457

(4.15) ‖u− P̃ ũc‖A ≤ ηw‖D−
1
2Au‖+

2qνηw
1 + q2ν

‖u‖A,458

where now the perturbation term exhibiting geometric decay in ν.459

It is clear that error estimate (4.15) is much better than (4.13). We note that460

in the spectral AMGe method in the form presented in [5], explicit bounds of ηw are461

available. Therefore, the Chebyshev polynomial (4.14) can be used to modify the462

coarse space in the spectral AMGe setting.463

Using either the SA polynomial (4.1) or the Chebyshev polynomial (4.14) basically464

provides an approximate solution to the linear system (2.7). Therefore, another way465

to solve (2.7) is via nonlinear iterative methods such as the conjugate gradient (CG)466

method. Using CG implicitly constructs a polynomial pν(t) which defines π̃f . The467

convergence analysis of CG can be used to estimate ‖(π̃f − πf )πDu‖A. Denote the468

ν-th iteration of CG for solving Afuc = PT⊥APuc by uνc with zero initial guess, then469

similarly to (4.12), we have470

‖(π̃f − πf )πDu‖A = ‖P⊥(Ã−1f −A
−1
f )PT⊥APuc‖A = ‖(Ã−1f −A

−1
f )PT⊥APuc‖Af

471

= ‖uνc − uc‖Af
≤ 2qν‖uc‖Af

= 2qν‖A−1f PT⊥APuc‖Af
472

≤ 2qν‖A−
1
2

f PT⊥A
1
2 ‖‖Puc‖A = 2qν‖A 1

2P⊥A
− 1

2

f ‖‖Puc‖A473

= 2qν‖Puc‖A ≤ 2qνηw‖u‖A.474475
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Therefore, we have the following result.476

Theorem 4.9. If pν is the polynomial generated by CG, then the following energy477

error estimate holds478

(4.16) ‖u− P̃ ũc‖A ≤ ηw‖D−
1
2Au‖+ 2qνηw ‖u‖A,479

with the perturbation term exhibiting geometric decay in ν.480

Remark 4.10. The error estimates (4.15) and (4.16) both have perturbation terms481

that decay geometrically with the same rate q, therefore, we can conclude that mod-482

ifying the coarse space based on CG polynomial gives better estimates than the SA483

polynomial. Note that the CG approximation also, as in the SA case, does not need484

estimates for the spectrum of Af , whereas these are needed in the Chebyshev poly-485

nomial case.486

4.5. Example: Linear Finite Elements for Laplace Equation. As a simple487

example, we consider the Laplace equation, −∆u = f , discretized using piecewise488

linear finite elements. In this case, we have ηw ' H
h (cf., [5]) where H stands for the489

diameter of the aggregates. This fact, combined with a simple argument relating the490

right hand side of the discrete problem, f , and the L2-norm ‖f‖0 of the right hand side491

function f (as shown in [27]), we conclude that the first term ηw‖D−
1
2Au‖ ' H‖f‖0.492

If we want to balance the second term with the first one, we need to choose 2qν ' H493

(assume Chebyshev polynomial or CG used). This implies that494

ν log

(
1 +

2

ηw − 1

)
' log

1

H
,495

and since log
(

1 + 2
ηw−1

)
' 2

ηw−1 '
h
H , we have the following estimate for the poly-496

nomial degree (or the number of iterations used for CG)497

ν ' H

h
log

1

H
.498

This ensures the error estimate,499

‖u− P̃ ũc‖A ≤ C (H‖f‖0 +H‖u‖A) .500

Similar argument can also be applied to the SA polynomial case in order to get an501

estimate of the polynomial degree.502

5. Remarks for Elliptic Problems with High Contrast Coefficients. We503

consider the case with exact projection πf for simplicity in this section. In section 3,504

we showed that the second component of the two-level A-orthogonal decomposition505

u = (I − πD)v + (I − πf )πDu,506

is actually the solution uc of the modified coarse problem (3.5). It is worth noticing507

the the first component above, (I−πD)v, is the A-orthogonal projection of u onto the508

space Range(I − πD). We already discussed the fact that the matrix of this problem509

is sparse and well-conditioned (after symmetric diagonal scaling of A). Thus it is510

computationally feasible to explicitly compute this component as well. Of course,511

this is not surprising since a two-grid AMG with the standard coarse space Range(P )512

and using D as a smoother is uniformly convergent, hence u can be approximated well513
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by a few V-cycles. Note that such an AMG uses only sparse matrix-operations with514

much sparser matrices than the one of the upscaled problem (3.5) and Af . Therefore,515

introducing the modified coarse space Range((I − πf )πD) and the resulting error516

estimate (3.6) (and its corollaries) are mostly of theoretical value. In the case of517

approximate projections, if we cannot control the sparsity of the coarse matrices so518

that the resulting method requires much less memory and computational cost than519

the original matrix A, then the upscaled problem is mostly of theoretical value only.520

With our numerical tests we demonstrate that in the PDE case, careful choice of the521

polynomial degree can lead to some savings in practice for the upscaled problems. The522

situation for graph Laplacian matrices is more challenging for graphs with irregular523

degree distribution.524

One possible practical application of the presented method is the diffusion equa-525

tion,526

(5.1)

{
−div(κ∇u) = f, in Ω,

u = 0, on ∂Ω,
527

where Ω ⊂ Rd, d = 2 or d = 3, is a polygonal/polyhedral domain. Using H1-528

conforming finite element space on a quasiuniform mesh Th, we end up with linear529

system of the form530

Au = f .531

By construction, we have ‖f‖ ' h
d
2 ‖f‖0. Let D be the diagonal of A. We have532

D ' diag(hd−2κi), where κih
d are the diagonal entries of the weighted mass matrix533

corresponding to the κ-weighted L2-bilinear form. Hence, we have the estimate534

‖D− 1
2 f‖ ≤ ηb h‖f‖0, κ−1535

for a uniform constant ηb, which leads to the error estimate536

‖uh − uH‖1, k ≤ ηwηb h‖f‖0, κ−1 .537

Here uh is the finite element solution of the fine-grid problem and uH is the finite538

element solution corresponding to the upscaled solution uc of (3.5). Note that, this539

error estimate is independent of the coefficient κ with the expense of the weighted540

norms involved. For κ ' 1, using the fact that ηw ' H/h, the last error estimate541

reads ‖uh − uH‖1 ≤ CH‖f‖0 which is an analog to the one in [22].542

6. Numerical Experiments. In this section, we present numerical results illus-543

trating the theory demonstrating the approximation properties of the modified coarse544

spaces. In all experiments, we use the AMGe method in the form proposed in [5, 27]545

to construct the original coarse space Range(P ) so that it satisfies the WAP. More546

presicely, we use a greedy type algorithm to construct a set of aggregates and solve a547

generalized eigenvalue problem (see (13) in [5]) to construct the tentative prolonga-548

tion as shown in (2.3). To assess the quality of the proposed approach in practice, we549

only consider two-grid method and the modified coarse space based on the polynomial550

approximations as discussed in Section 4. In fact, we use the CG polynomial in all551

our experiments as it gives the best error estimates (see Remark 4.10). The tests are552

run in Matlab using an AMG package developed by the authors.553
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Example 6.1. Consider the diffusion problem (5.1) posed on Ω = [0, 1] × [0, 1]554

with555

κ =

{
ε, in [0.25, 0.5]× [0.25, 0.5] ∩ [0.5, 0.75]× [0.5, 0.75]

1, otherwise.
556

Our first example is diffusion problem (5.1) with discontinuous coefficient. As557

discussed in Section 5, the modified coarse space provides error estimates that are558

independent of the jumps. The results shown in Figure 1 support this theoretical559

results. Here, the fine level problems are all of size 4, 225 × 4, 225 on a uniform560

triangular mesh with h = 1
64 and the coarse level matrices are all of size 302 × 302.561

We change the contrast of the diffusion coefficient, i.e., ε, and report how the SAP562

constant ηs changes with respect to the degree ν of the polynomial (since we use CG,563

the degree is equivalent to the number of iterations). For comparison, we also report564

the SAP constants when we modify the coarse space exactly by directly inverting Af .565

As clearly seen, the SAP constant stays almost the same for different choices of ε for566

a fixed ν, and is indeed practically independent of the contrast ε. This is consistent567

with the theory and shows that the modified coarse spaces provide approximations568

in the energy norm that are robust with respect to the jumps. From Figure 1, we569

also observe that the SAP constant decreases to the SAP constant that corresponds570

to the modified coarse space with exact inverse, when ν increases with a rate that571

is almost the same for different ε. This is also consistent with the theoretical results572

presented in Section 4; namely, that the decay rate should depend on ηw which, in573

fact, in the present case depends on H
h . Our next numerical experiment further verifies574

this property; see the results shown in Figure 2. Since h is N−1/2 and H is roughly575

N
−1/2
c , we present the results in terms of the ratio N

Nc
, which is roughly

(
H
h

)2
. More576

specifically, from Figure 2, we see that the SAP constant decreases when ν increases577

and the bigger the ratio N
Nc

is, the slower the decay rate is. But, the SAP constant578

converges to the SAP constant corresponding to the modified coarse space with exact579

Af inverse, as expected.580

The next test illustrates the properties of the coarse matrices corresponding to581

the modified coarse spaces based on polynomial approximation. More specifically,582

we are interested in the sparsity of the modified prolongation matrix P̃ (in terms of583

percentage w.r.t to the matrix size NNc). We also are interested in the AMG operator584

complexity (OC) defined as the ratio between the total number of nonzeros of A plus585

the number of the nonzeros of the coarse-level matrix and the number of nonzeros of586

A. Note that ν = 0 corresponds to the original prolongation P (and respective coarse587

matrix). From Table 1, as expected, we see that both the number of nonzeros and588

operator complexity grow when ν increases. The number of nonzeros of P̃ grows faster589

when the ratio N
Nc

gets bigger whereas the operator complexity actually grows slower590

when N
Nc

gets larger. We note that in practice, for upscaling purposes, we need to591

have operator complexity less than two (then we use less memory to store the coarse592

matrix than the original fine-level one). Our results indicate that to achieve desired593

approximation accuracy for a reasonable computational cost can be a challenging594

task. In addition, we also use the modified coarse space in AMG iterative method595

and report number of iterations of the two-grid algorithms. Here, we choose f = 1596

in the diffusion problem (5.1). In the two-grid algorithm, Gauss-Seidel relaxation is597

used, with zero initial guess and the stopping criterion is achieving a reduction of598

the `2 norm of the relative residual by 10−6. As expected, the number of iterations599
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Fig. 1. Example 6.1: the SAP constants for different ε (h = 1/64, N = 4, 225 and Nc = 302)

Fig. 2. Example 6.1: the SAP constants for different Nc (h = 1/64, N = 4, 225 and ε = 10−4)

(Iter) decreases as ν increases. We note that in practice for solving linear systems, we600

need to consider the trade-off between the computational complexity and convergence601

behavior. The latter can also be a challenge in practice.602

Example 6.2. To stress upon the fact that our approach is in fact purely alge-603

braic, we apply our results to graph Laplacian systems corresponding to graphs listed604

in Table 2.605

In Figure 3, we present the SAP constants for the different graphs from Table 2.606

Here, we use a simple unsmoothed aggregation approach. In order to achieve aggres-607
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Table 1
Example 6.1: sparsity of the modified coarse space and performance of two-grid AMG method

with different ν (h = 1/64, N = 4, 225 and ε = 10−4)

N/Nc = 6.11 N/Nc = 13.99 N/Nc = 20.41

nnz of P̃ OC Iter nnz of P̃ OC Iter nnz of P̃ OC Iter
ν = 0 0.15% 1.22 43 0.43% 1.13 52 1.2% 1.15 60
ν = 1 0.92% 2.19 30 2.75% 1.63 42 6.97% 1.65 55
ν = 2 2.52% 3.92 23 7.27% 2.41 38 17.55% 2.24 50
ν = 3 4.92% 6.62 19 13.78% 3.29 34 31.35% 2.73 48
ν = 4 8.14% 8.89 16 21.87% 4.10 30 45.87% 2.98 46
ν = 5 12.07% 11.71 14 30.96% 4.74 28 60.04% 3.10 41

Table 2
A set of networks from different real-world applications (first three graphs are from Stanford

Large Network Dataset Collection [19] and the last graph is from SuiteSparse Matrix Collection [7]).
For each graph, we show its number of vertices, number of edges, average vertex degree (ave. deg.)
and maximal vertex degree (max. deg.)

Vertices Edges ave. deg. max. deg. Description

bitcoin-alpha 3,775 14,120 7.48 510 Bitcoin Alpha web of trust network

ego-facebook 4,039 88,234 43.69 1045 Social circles from Facebook

ca-GrQc 4,158 13,425 6.46 81 Collaboration network of Arxiv

rw5151 5,151 15,248 5.92 7 Markov chain modeling

sive coarsening, the aggregates are built based on the sparsity pattern of L2, where L608

corresponds to the graph Laplacian. The original coarse space (or respective interpo-609

lation matrix P ) is constructed using the spectral AMGe method (as used in [12]). As610

we can see, although the ratio N
Nc

differs for the different graphs, if we use relatively611

accurate approximation (i.e. relatively large ν), the SAP constant stays small and is612

fairly similar for different graphs. This demonstrate that the modified coarse spaces613

are also robust for these real-world graphs.614

In Figure 4 and 5, we illustrate the sparsity of the modified prolongations and615

respective coarse matrices. We notice that the nonzeros percentage of P̃ grows fairly616

quickly, which suggests that in practice, only small ν makes sense. If the coarse level617

problem are meant to be used multiple times, due to reasonable operator complexity618

and good approximation property achieved by large ν, we could use more accurate619

approximated modified coarse spaces coming from relatively large ν. For graphs with620

irregular degree distribution, the challenge to maintain reasonable sparsity of the621

coarse matrices with good approximation properties is much more pronounced than622

in the discretized PDE case and it requires more specialized study.623

7. Conclusions. In this paper, we investigate the use of certain AMG coarse624

spaces for the purpose of dimension reduction which in the present setting is referred625

to as numerical upscaling. As it is well-understood that although the traditional626

AMG coarse spaces do satisfy the WAP (weak approximation property), it is not627

sufficient for the purpose of upscaling because the coarse-level solutions do not neces-628

sarily approximate the fine-level solution with guaranteed accuracy. To remedy this,629

we follow the approach developed in [22] extending it to the presented AMG setting.630

The method exploits a projection πf used to modify the original coarse space, which is631

assumed to possess a WAP, so that the resulting new, modified, coarse space satisfies a632

SAP (strong approximation property) with provable satisfactory bound on the result-633

ing constant ηs. More specifically, the modified coarse space is one of the components634
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Fig. 3. Example 6.2: the SAP constants for different ν

Fig. 4. Example 6.2: number of nonzeros of P̃ (in percentage) for different ν

in a two-level A-orthogonal decomposition so that the corresponding coarse-level so-635

lution gives accurate approximation in energy norm. One main challenge with this636

approach is the fact that the matrix A−1f used in the definition of πf , is dense even637

if Af is sparse. Thus, modifying the original coarse space with exact πf is compu-638

tationally infeasible (for large-scale problems). In order to make such modification639

more practical, we use the fact (which we prove) that Af is well-conditioned, allow-640
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Fig. 5. Example 6.2: operator complexity for different ν

ing the use of polynomials to approximate its inverse, leading to an approximate πf ,641

which is used to define an approximate modified coarse space. Such approximation642

is computational feasible and also provides provable error estimates in energy norm.643

Moreover, the error estimates improve when increasing the degree of the polynomial644

used in the approximation.645

We provide numerical results that illustrate the theory and demonstrate the ac-646

curacy and sparsity of the coarse problems coming from the approximately modified647

coarse space. The tests include both, examples of diffusion equation with high con-648

trast coefficients as well as graph Laplacian matrices corresponding to some real-life649

applications.650

As discussed, the use of such modified coarse spaces is of interest in dimension651

reduction which, as our model tests demonstrate, can be challenging for the present652

approach (in terms of maintaining reasonable sparsity of the coarse matrices). In the653

PDE case this challenge seems resolvable if large enough coarsening factor (H/h) is654

employed, whereas in the graph application for graphs with irregular degree distribu-655

tion, in addition to high coarsening factor one may need to employ graph disaggre-656

gation (cf., [16]), which is left for a possible future study. Additionally, in the PDE657

case, it is of interest to extend the present results to other types of PDEs such as ones658

posed in H(curl) and H(div), which will provide alternatives to the existing AMGe659

upscaling methods (cf., [17], [13], and [1]).660
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[6] M. Brezina, P. Vaněk, and P. S. Vassilevski, “An Improved Convergence Analysis of677
Smoothed Aggregation Algebraic Multigrid,” Numerical Linear Algebra with Applications678
19(3)(2012), pp. 441-469. (published online: 2 MAR 2011, DOI: 10.1002/nla.775).679

[7] T. A. Davis and Y. Hu, “The university of Florida sparse matrix collection,” ACM Transactions680
on Mathematical Software, 38(1), 2011, pp. 1-25.681

[8] P. D’Ambra and P. S. Vassilevski, “Adaptive AMG with Coarsening Based on Compatible682
Weighted Matching,” Computing and Visualization in Science 16 (2013), pp. 59-76.683

[9] S. Demko, W.F. Moss, and P.W. Smith, ”Decay rates of inverses of band matrices”, Mathe-684
matics of Computation 43(168)(1984), pp. 491-499.685

[10] R. Falgout, P. S. Vassilevski, and L. T. Zikatanov, “On Two-grid Convergence Estimates,”686
Numerical Linear Algebra with Applications, 12(5-6), 2005, pp. 471-494.687

[11] T. Grauschopf, M. Griebel, and H. Regler, “Additive multilevel preconditioners based on bilinear688
interpolation, matrix-dependent geometric coarsening and algebraic multigrid coarsening689
for second-order elliptic PDEs,” Applied Numerical Mathematics, Multilevel Methods 23,690
1997, pp. 6395691

[12] X. Hu, P. S. Vassilevski, and J. Xu, “A two-grid SA-AMG convergence bound that improves692
when increasing the polynomial degree,” Numerical Linear Algebra with Applications693
23(4)(2016), pp. 746–771.694

[13] D. Kalchev, C. S. Lee, U. Villa, Y. Efendiev, and P. S. Vassilevski, Upscaling of Mixed Fi-695
nite Element Discretization Problems by the Spectral AMGe Method, SIAM Journal on696
Scientific Computing 38(5) (2016), pp. A2912-A2933.697

[14] T. V. Kolev and P. S. Vassilevski, “Parallel auxiliary space AMG for H(curl) problems,” Journal698
of Computational Mathematics 27(2009), pp. 604–623.699

[15] T. V. Kolev and P. S. Vassilevski, “Parallel auxiliary space AMG for H(div) problems,”S SIAM700
Journal on Scientific Computing 34(2012), pp. A3079-A3098.701

[16] V. Kuhlemann and P. S. Vassilevski, “Improving the Communication Pattern in Mat-Vec Op-702
erations for Large Scale-free Graphs by Disaggregation,” SIAM Journal on Scientific Com-703
puting 35(5)(2013), pp. S465-S486.704

[17] I. V. Lashuk and P. S. Vassilevski, “The Construction of Coarse de Rham Complexes with705
Improved Approximation Properties,” Computational Methods in Applied Mathematics706
14(2)(2014), pp. 257-303.707

[18] J.V. Lent, R. Scheichl, I.G. Graham, “Energy-minimizing coarse spaces for two-level Schwarz708
methods for multiscale PDEs,” Numerical Linear Algebra with Applications 16, 2009, pp.709
775799.710

[19] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford Large Network Dataset Collection, http:711
//snap.stanford.edu/data.712

[20] Oren E. Livne and Achi Brandt, “Lean Algebraic Multigrid (LAMG): Fast Graph Laplacian713
Linear Solver,” SIAM Journal on Scientific Computing 34(4) (2012), pp. B499-B522714

[21] S.P. MacLachlan and J.D. Moulton, “Multilevel upscaling through variational coarsening,”715
Water Resources Research 42, 2006.716

[22] A. Malqvist and D. Peterseim, “Localization of elliptic multiscale problems,” Math. Comp.,717
83(290), pp. 2583-2603, 2014.718

[23] J.D. Moulton, J.E. Dendy, and J.M. Hyman, “The Black Box Multigrid Numerical Homoge-719
nization Algorithm.,” Journal of Computational Physics 142, 1998, pp. 80108.720
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