
LLNL-JRNL-824368-DRAFT

Parallel Element-based Algebraic
Multigrid for H(curl) and H(div) Problems
Using the ParELAG Library

D. Z. Kalchev, P. S. Vassilevski, U. Villa

July 10, 2021

SIAM Journal on Scientific Computing (SISC)



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



PARALLEL ELEMENT-BASED ALGEBRAIC MULTIGRID FOR

H(curl) AND H(div) PROBLEMS USING THE PARELAG LIBRARY

DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

Abstract. This paper presents the use of element-based algebraic multigrid
(AMGe) hierarchies, implemented in the ParELAG (Parallel Element Agglomer-
ation Algebraic Multigrid Upscaling and Solvers) library, to produce multilevel
preconditioners and solvers for H(curl) and H(div) formulations. ParELAG con-
structs hierarchies of compatible nested spaces, forming an exact de Rham sequence
on each level. This allows the application of hybrid smoothers on all levels and
AMS (Auxiliary-space Maxwell Solver) or ADS (Auxiliary-space Divergence Solver)
on the coarsest levels, obtaining complete multigrid cycles. Numerical results are
presented, showing the parallel performance of the proposed methods. As a part
of the exposition, this paper demonstrates some of the capabilities of ParELAG
and outlines some of the components and procedures within the library.

Key words. algebraic multigrid (AMG), AMGe, H(curl) solvers, H(div) solvers,
ADS, AMS, de Rham sequence, hybrid smoothers, finite element methods, ParE-
LAG, MFEM

Mathematics subject classification. 65F08, 65F10, 65N22, 65N30, 65N55

1. Introduction

Partial differential equation (PDE) models involving the curl (rotation) and div
(divergence) operators often arise in the numerical simulation of physical phenomena
and engineering systems. For example, this includes models of electromagnetism using
Maxwell equations (possibly as a part of larger multiphysics codes) [51, 59, 15], mixed
finite element methods for second-order elliptic equations [17] and coupled systems
[63, 8], first-order system least-squares (FOSLS) finite element methods [20, 57, 6, 7],
certain formulations of the Stokes and Navier-Stokes equations [21, 22, 50], and
radiation transport simulations [19].

Among other discretization techniques, the finite element method (FEM) is a par-
ticularly appealing technique for problems defined on complex geometries due to its
ability to handle unstructured meshes. One major challenge in solving linear systems
arising from (FEM) discretizations of H(curl) and H(div) forms (i.e. symmetric
problems involving the curl or div operators) is the large null spaces of the curl and
divergence. A variety of approaches have been developed, including geometric and
algebraic multigrid (AMG) [32, 58, 14, 37, 31, 10, 27, 13, 64, 9, 65, 61], static conden-
sation and hybridization [24], and domain decomposition methods [52, 66, 67, 55, 36].
Other techniques [34, 42] are based on reformulation of the governing equations that
are attuned to (geometric) multigrid solvers and preconditioners. A fundamental con-
tribution to the development of multilevel methods for H(curl) and H(div) problems
is the work of Hiptmair and Xu [35], which proposed auxiliary space preconditioners
employing stable regular decompositions; see also [16]. Based on those ideas quite

This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under contract DE-AC52-07NA27344 (LLNL-JRNL-000000).

The work of the second author was partially supported by NSF under grant DMS-1619640.

1



2 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

successful parallel H(curl) and H(div) solvers were developed as a part of HYPRE
[1]: AMS [43] and ADS [44]. Furthermore, recent developments of generic auxiliary
space preconditioners [41, 40], utilizing nonconforming reformulations and static
condensation, can potentially be employed to implement efficient preconditioners for
H(curl) and H(div) problems.

This paper describes and demonstrates the utilization of an element-based AMG
(AMGe) approach (see e.g. [38, 60, 61]) for preconditioning conforming discrete
H(curl) and H(div) formulations. While AMGe methods were originally developed in
the context of symmetric positive definite (SPD) systems coming from H1-conforming
formulations [23, 48], they demonstrate the capacity for a broader applicability. An
important role in the construction of the AMGe multilevel methods is played by
the de Rham complex, a sequence of Sobolev spaces corresponding the domain and
ranges of a chain of exterior derivatives. For example, the sequence H1 → H(curl)→
H(div)→ L2 form the three-dimensional de Rham complex, corresponding to the
chain of ∇, curl, div differential operators (exterior derivatives). For more detail
regarding this elegant tool in the theory of finite elements, we refer to [33, 11]. Namely,
a discrete version of the sequence of conforming finite element spaces, maintaining
the exactness and commutativity properties, delivers numerical stability (inf-sup
compatibility) for a variety of mixed finite element methods. These ideas are used and
investigated in [49, 47, 56] for the construction of multilevel element-based algebraic
hierarchies of de Rham sequences of spaces. The last constitutes the foundation for
the current work expounded in this paper.

A fundamental idea in AMGe, as presented in this work and implemented in
ParELAG [5], is the element-based construction of coarse levels that structurally
resemble (fine) geometric levels composed of standard finite elements. This involves
the identification of coarse meshes with properly established coarse topologies in
the form of relations between coarse elements and coarse lower-dimensional mesh
entities (facets, edges, and vertices), similarly to geometric levels. Consequently,
utilizing the coarse topology, each coarse space is built via independent local coarse-
element-by-coarse-element computations, whose combined effect is a conforming
global coarse space. The independence of the local work makes the construction of
AMGe hierarchies naturally attuned to parallel computing.

ParELAG is a parallel library that builds hierarchies of stable sequences of discrete
spaces with approximation properties, to be utilized typically as discretization tools
for numerical upscaling [62] of mixed finite element formulations. It also provides a
set of respective preconditioners and solvers that can be used for solving the resulting
problems or building composite solvers for more complex problems. ParELAG has
been successfully applied, e.g., in upscaling for reservoir modelling [46] and multilevel
Monte Carlo simulations [54, 53, 25, 26].

This paper discusses the construction of multilevel solvers for H(curl) and H(div)
problems, using the hierarchies of spaces from ParELAG. To deliver a tidy and
concrete presentation, ideas are conveyed for the three-dimensional case, while one
can easily see how they would be applied in a two-dimensional setting. The availability
of entire de Rham sequences, together with all necessary transfer operators, on all
levels allows the utilization of hybrid (Hiptmair) smoothers [32, 61] on all levels, as
well as AMS and ADS on the coarsest levels, producing complete multigrid cycles.
An outline of the overall methodology is presented and the parallel performance of
the proposed solvers is shown in numerical examples. Finally, to further demonstrate
ParELAG’s capabilities and increase its visibility, mini applications within MFEM
[3], a massively parallel widely used finite element library, have been developed.



PARALLEL AMGE FOR H(curl) AND H(div) USING PARELAG 3

The outline of the remainder of the paper is as follows. The notation, the
H(curl) and H(div) problems of interest, and an overview of de Rham sequences
and their finite element discretization are presented in Section 2. Section 3 is
devoted to introducing the AMGe technique for the construction of a hierarchy of de
Rham sequences on agglomerated meshes, including the construction of prolongation
operators, co-chain projectors, and coarse exterior derivatives. Those operators
are useful for implementing the hybrid smoothers on all levels and the AMS and
ADS coarse solvers, as described in Section 4. Numerical results, demonstrating the
parallel performance of the proposed methods, are in Section 5. The conclusions and
a discussion of possible future directions are left for the last Section 6.

2. Preliminaries

This section presents the notation and function spaces used in this paper, as well
as the formulation of the H(curl) and H(div) problems. It also provides on overview
of finite element exterior calculus, including de Rham sequences of continuous and
discrete (finite element) spaces.

2.1. H(curl) and H(div) problems. Let Ω ⊂ R3 be a bounded contractible1 domain
with a Lipschitz-continuous boundary. Let L2(Ω) and [L2(Ω)]3 be the spaces of square
integrable scalar and, respectively, vector functions. For v ∈ L2(Ω) and v ∈ [L2(Ω)]3,
denote with ‖v‖20 = (v, v)0 and ‖v‖20 = (v, v)0 the norm induced by the corresponding
inner product.

Let D ∈ {grad, curl,div, 0} denote an exterior derivative operator. Then, the
notation H(D; Ω) is used to denote the usual function spaces H1(Ω) = {v ∈ L2(Ω);
grad v ∈ [L2(Ω)]3}, H(curl; Ω) = {v ∈ [L2(Ω)]3; curl v ∈ [L2(Ω)]3}, H(div; Ω) =
{v ∈ [L2(Ω)]3; div v ∈ L2(Ω)}, and L2(Ω). Clearly, H(D; Ω) is a Hilbert space
endowed with norm ‖·‖D induced by the inner product (·, ·)D = (·, ·)0 + (D·, D·)0.
For ease of notation, when the domain is omitted, it is understood that H(D) = H(D;
Ω).

Next, for D ∈ {curl, div} consider the symmetric bilinear form

(2.1) aD(u, v) = (αDu,Dv)0 + (β u, v)0 for u, v ∈ H(D; Ω),

where α, β ∈ L∞(Ω), α > 0, β > 0. These bilinear forms, referred as H(curl)
and H(div) forms hereafter, are positive definite and posses coefficient-dependent
continuity in term of ‖·‖D. If the coefficients are bounded away from zero, then the
bilinear forms satisfy respective coefficient-dependent coercivity.

Remark 2.1. For simplicity, only the case β > 0 is studied here. However, the
semi-definite case β ≥ 0 is considered in [43, 44]. In general, β can be an essentially
bounded symmetric positive (semi-)definite tensor. The bilinear forms are positive
definite when β is positive definite, generally semi-definite when β is semi-definite,
and coercivity depends on β being uniformly (on Ω) positive definite.

By means of a Galerkin projection onto H(D)-conforming discrete finite element
spaces, the discrete version of the bilinear form in (2.1) can be represented by a
symmetric positive (semi-)definite matrix. The goal of this paper is to construct
multilevel preconditioners for linear systems with such matrices. The corresponding
conforming finite element spaces, defined on a given fine mesh T h, are denoted

1Intuitively, a domain Ω can be continuously contracted to a point (i.e. is contractible) if it has no
holes or tunnels. Formally, a contractible domain is homotopy equivalent to a ball and to a single
point.



4 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

Dh
1−−−→

Dh
2−−−→

Dh
3−−−→

Figure 2.1. An illustration of the mapping between dofs in a tetra-
hedral element for the lowest order case.

by Vh(D) ⊂ H(D), for D ∈ {grad, curl, div, 0}. They are spaces of, respectively,
continuous piecewise polynomial Lagrangian (nodal), Nédélec, Raviart–Thomas,
and discontinuous piecewise polynomial finite elements [17]. In the case of lowest
order finite elements, the degrees of freedom (dofs) in the spaces are associated with
mesh entities of increasing dimensionality, one dof per entity. Namely, these are,
respectively, point values at vertices, tangential flow along edges, normal flux across
facets, constant values in elements (sometimes referred to as cells).

2.2. De Rham sequences of continuous and discrete spaces. Exterior calculus
[11] is a key tool in the stability and converge analysis of finite element discretizations
and solvers for the H(D) form in (2.1). This is based on the de Rham complex
of Sobolev spaces on Ω together with a respective subcomplex of conforming finite
element spaces

(2.2)

R H(D1) H(D2) H(D3) H(D4) {0}

R Vh(D1) Vh(D2) Vh(D3) Vh(D4) {0}.

D0=I D1=grad

Πh
1

D2=curl

Πh
2

D3=div

Πh
3

D4=0

Πh
4

Dh
0=I Dh

1 Dh
2 Dh

3 Dh
4=0

Above, R represents the set of real numbers, I is the injection operator mapping a
real number to the corresponding constant function on Ω, Πh

i : H(Di)→ Vh(Di) for
i = 1, . . . , 4 are appropriate (cochain) projection operators, Di : H(Di)→ H(Di+1)
for i = 1, . . . , 3 are differential operators (exterior derivatives) mapping between the
Sobolev spaces, and Dh

i : Vh(Di)→ Vh(Di+1) are the corresponding discrete versions.
In the finite-dimensional setting, functions in Vh(Di) (i = 1, . . . , 4) can be identified

with algebraic vectors collecting the coefficients in the respective finite element
expansion (dofs). In what follows, dhi = dim(Vh(Di)) denotes the number of dofs of

the space Vh(Di). Hence, Dh
i for i = 1, . . . , 3 can be viewed as matrices in Rd

h
i+1×dhi

expressed in terms of the bases in Vh(Di). They can be assembled via an overwriting
finite element assembly2 procedure from local, on elements, versions of the operators
and their matrices. For example, for the lowest order discretization (see Fig. 2.1), the
operators Dh

i (i = 1, . . . , 3) map from mesh entities of lower dimensionality to those of
higher dimensionality, i.e, vertices→ edges, edges→ facets, and facets→ elements,
respectively. It is assumed that Πh

i for i = 1, . . . , 4 are bounded operators, i.e.,
‖Πh

i ‖Di <∞, where ‖·‖Di denotes the corresponding induced operator norm. This
holds for the considered finite element spaces and implies the quasi-optimality property
‖u−Πh

i u‖Di ≤ ‖I −Πh
i ‖Di infvh∈Vh(Di)‖u− v

h‖Di for all u ∈ H(Di); see [11].

2Overwriting means that during the assembly the entries in the global matrix are overwritten by
the values of the entries in the local matrices rather than accumulating (adding) them. See the
implementation of DiscreteOperator in MFEM [3].



PARALLEL AMGE FOR H(curl) AND H(div) USING PARELAG 5

Furthermore, for i = 1, . . . , 3, let γΓ,i denote the trace operator, that is the
restriction of functions in H(Di; Ω) to Γ ⊂ ∂Ω. Specifically, γΓ,1 is the usual

trace operator mapping H1(Ω) to H1/2(Γ); γΓ,2 restricts the tangential flow v × n
(v ∈ H(D2)) to the surface Γ, and finally, γΓ,3 restricts the normal flux v · n
(v ∈ H(D3)) to Γ. Here, n denotes the outward unit normal vector to ∂Ω.

Remark 2.2. The diagram (2.2) corresponds to the so-called natural boundary condi-
tions. It can be opportunely modified to the case of essential boundary conditions
(that is, the case of vanishing traces on ∂Ω), as discussed in [11].

2.2.1. Properties of the de Rham diagram. Observe that the external derivative
operators Di are such that Di+1Di = 0 (i.e., Range(Di) ⊂ Ker(Di+1)) for i = 0, . . . , 3.

A de Rham sequence is called exact if and only if

(2.3) Range(Di) = Ker(Di+1),

for i = 0, . . . , 3. Exactness depends on the topological characteristics of Ω. In partic-
ular, the connectivity of Ω is sufficient to demonstrate this property for i = 0 and 3,
whereas it holds for i = 1 using that Ω is simply-connected. The contractibility of Ω
provides the property for i = 2 as a consequence of Poincaré’s lemma; see, e.g., [33].

The de Rham diagram (2.2) is said to satisfy the commutativity property if and
only if

Dh
i ◦Πh

i = Πh
i+1 ◦Di for i = 1, . . . , 3.

Note that the commutativity property guarantees that, for a contractible domain Ω,
the exactness of the continuous de Rham sequence transfers to the discrete sequence
[11].

The exactness of the continuous de Rham complex provides, e.g., stable decom-
positions (like the Helmholtz decomposition [51] and the so-called regular ones in
[35]), while the commutativity of (2.2) and the exactness of the discrete subcomplex
contribute to the inheritance of some important properties in the discrete setting,
like the discrete stable decompositions in [35] and the provision of the (inf-sup)
stability of certain mixed finite element methods; see [17, 33, 11]. Such stability,
together with the approximation properties of the discrete spaces, is a sufficient
and necessary condition for the convergence of those mixed finite element methods.
As it is discussed in the following section, ParELAG builds de Rham sequences of
coarse spaces satisfying the same exactness and commutativity properties of the fine
sequence to ensure stability of coarse level discretizations, as well as approximation
properties [49, 47, 56].

3. Overview of the multilevel de Rham sequence

The fundamentals and notions associated with the coarsening of the de Rham
sequence using AMGe techniques are now described. The key property of this
approach, as articulated below, is that de Rham sequence at each level of the hierarchy
exhibits fine-like (geometric-like) finite element features. This is a significant property
of AMGe utilizing agglomeration of elements, which, together with the algebraic
nature of the approach, allows the recursive application of the coarsening procedure.
Doing so, ParELAG produces multilevel hierarchies of nested spaces forming exact
and commutative de Rham complexes on all levels.

Starting with a given fine mesh the basic idea is to build a coarse mesh of coarse
elements via agglomeration and identify lower-dimensional coarse mesh entities, like
coarse facets, edges, and vertices, together with their relationships, forming the coarse
mesh topology. The mesh topology is needed for the construction of the de Rham



6 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

sequences as it reflects a natural structure within the sequence of spaces and exterior
derivatives. Note that the coarse de Rham sequence is formed in terms of the fine
one as a sequence of subspaces, i.e., coarse basis functions are linear combinations
of fine basis functions. The construction of coarse bases is purely algebraic and
entails the obtainment of target traces, or shortly targets, and an extension process.
In particular, the extension process involves the solution of small local, on coarse
entities, mixed finite element problems to produce the final coarse basis functions.

Specifically, consider the fine level de Rham sequence (denoted with the superscript
h) and the coarser level one (denoted with the superscript H), giving raise to the
diagram

(3.1)

R Vh(D1) Vh(D2) Vh(D3) Vh(D4) {0}

R VH(D1) VH(D2) VH(D3) VH(D4) {0},

Dh
0=I Dh

1

ΠH
1

Dh
2

ΠH
2

Dh
3

ΠH
3

Dh
4=0

ΠH
4

DH
0 =I DH

1 DH
2 DH

3 DH
4 =0

where DH
i : VH(Di) 7→ VH(Di+1) (i = 1, . . . , 3) and ΠH

i : Vh(Di) 7→ VH(Di) (i =
1, . . . , 4) denote, respectively the coarse exterior derivative and co-chain projection
matrices.

Assuming that the exactness (2.3) of the continuous de Rham sequence holds, the
coarsening procedure must guarantee the exactness property of the coarse sequence,
that is,

(3.2) Range(DH
i ) = Ker(DH

i+1) for i = 1, . . . , 3,

and the commutativity property

(3.3) DH
i ◦ΠH

i = ΠH
i+1 ◦Dh

i for i = 1, . . . , 3.

To this aim, ParELAG not only builds prolongation operators Pi : VH(Di) 7→
Vh(Di) (which allows to transfer information between levels), but also the coarse
exterior derivative operators DH

i (which allows to define the hybrid smoothers
in Section 4.1), and co-chain projectors ΠH

i (which play a fundamental role in
applying the auxiliary space AMG preconditioners to coarse problems as described
in Section 4.2). Moreover, ParELAG keeps track of element and facets attributes to
ensure that material properties and essential boundary conditions can be properly
applied to the discretized systems at every level of the hierarchy.

Finally, it is important to note that ParELAG need not necessarily build the entire
sequence of spaces, if the application does not require it. Instead ParELAG builds
spaces of the de Rham sequence in reverse order, that is from H(D4) ≡ L2 to H(Di)
for any i ∈ [1, 4].

3.1. Construction of a hierarchy of coarse meshes by agglomerating finer
mesh entities. The first step is the generation of a coarse mesh T H , from the given
fine one T h, including all mesh entities: coarse elements, facets, edges, and vertices.
The foundation of this is the construction of coarse elements as agglomerates (or
agglomerated elements), which provide a non-overlapping partition of the fine elements;
see Fig. 3.1a. This is performed in a recursive manner to generate a hierarchy of nested
meshes; see Fig. 3.1b. One customary way to achieve that is via partitioning (e.g.,
using METIS [2]) of the dual graph of T h—a graph whose nodes are the elements in
T h and any two nodes are connected in the graph when the respective mesh elements
share a facet. It is not difficult to generate the agglomerates as contiguous partitions
in terms of the dual graph, e.g., using METIS or simply identifying the connected
components of the partitioning after it is generated. Moreover, ParELAG provides



PARALLEL AMGE FOR H(curl) AND H(div) USING PARELAG 7

(a) Agglomerates of
fine elements

(b) Agglomerates of
agglomerates

Figure 3.1. Examples of agglomerates. (The gaps between agglom-
erates are for illustration.)

dofs facets (fine scale)

T1 T2

F

Figure 3.2. A two-dimensional illustration of the designation of a
coarse facet F as a set of fine-scale facets, serving as an interface
between agglomerates T1 and T2.

additional tools that can help, via weighting the dual graph and further splitting of
agglomerates, improve the topological properties of the coarse elements, which are
relevant if H(curl) is utilized.

Using the partitioning of T h and viewing each agglomerate T ∈ T H as a collection
of fine facets, an intersection procedure (see [61, section 1.9]) over these collections
provides the coarse facets as sets of fine facets (see Fig. 3.2), which can be consistently
interpreted as interface surfaces between coarse elements. Further viewing the
obtained coarse facets as collections of fine edges, their intersection identifies coarse
edges as sets of fine edges. Finally, the intersection of coarse edges in terms of fine
vertices identifies the coarse vertices. Coarse facets and edges additionally carry
information about the orientation of their constituting fine entities. Such a set of
fine-scale orientations for a coarse entity represents the orientation of that coarse
entity. More precisely, these are +1 and −1 data entries in the agglomerated topology
relating each coarse entity to its comprising fine-scale ones, respectively representing
the preservation or the reversion of the original orientation of the fine entity within
the coarse-scale one, so that each agglomerated entity has a consistent orientation.
For example, a coarse facet F has an associated vector of +1 and −1, denoted by
ϕF , that based on the orientation of the constituting fine facets devises a consistent
orientation for F , so that the normal vector to F points everywhere from one of its
adjacent agglomerates to the other, e.g., from T1 to T2 in Fig. 3.2. Finally, coarse



8 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

entities associated with the domain boundary, or portions of it, are identified, thus
allowing to track boundary dofs and apply boundary conditions on coarse levels.

3.1.1. ParELAG’s implementation of agglomerated meshes hierarchy. ParELAG con-
tains a set of partitioner classes, which generate an element partitioning on the
current level that composes the agglomerated elements. For example, the class
MFEMRefinedMeshPartitioner constructs agglomerates in the form of geometric
coarse elements by reverting previous refinements performed by MFEM, while the
class MetisGraphPartitioner invokes METIS internally. Furthermore, the coarse
elements can be optionally made to conform to material (coefficient) interfaces by split-
ting agglomerates that cross such interfaces. Instances of AgglomeratedTopology
collect coarse entities together with relationships between them in the form of
a so called (agglomerated) topology of T H . Note that such a topology object
in itself also represents a complex related to (3.1). It further contains relations
between agglomerated entities and their comprising fine ones. Particularly, the
AgglomeratedTopology object on the finest level is obtained from the given mesh
T h (i.e., using MFEM). Relationships between fine and coarse entities are stored
in AgglomeratedEntinty_Entity tables within AgglomeratedTopology. Each row
in AgglomeratedEntinty_Entity table corresponds to a coarse entity and the non-
zeros entries in each row represent the finer grid entities that form the coarse entity.
Furthermore, AgglomeratedEntinty_Entity tables for facets and edges also store
orientation information.

Finally, having defined a topology on the current level, a new coarser agglomer-
ated topology is generated by invoking the CoarsenLocalPartitioning() member
function of AgglomeratedTopology, using the agglomerated elements produced on
the current level by a partitioner class.

3.2. The element-based construction of the coarse sequences. Here, we set
the stage for the definition of the coarse basis functions in Section 3.3 by review-
ing the element-based construction of the components that constitute the coarse
sequences, once the coarse basis functions are obtained. This effectively reduces the
considerations to the local agglomerate-by-agglomerate algebraic process of building
locally-supported coarse bases presented in Section 3.3.

3.2.1. Coarse bases, prolongation matrices, and co-chain projectors. The coarse spaces
VH(Di) for i = 1, . . . , 4 are obtained via the construction of coarse bases as sets of
algebraic vectors in terms of the respective dofs in Vh(Di), i.e., coarse basis functions
are linear combinations of fine basis functions. These algebraic vectors constitute the

columns of corresponding prolongation matrices Pi ∈ Rdhi ×dHi , Pi : VH(Di)→ Vh(Di),
with full column ranks, where dHi = dim(VH(Di)). Similarly to the fine level, the
coarse basis functions are supported locally and built locally agglomerated entity by
agglomerated entity (more details in Section 3.3). The VH(Di)-dofs are identified
with the columns of Pi, i.e., with the respective coarse basis functions. Moreover,
the VH(Di)-dofs associated with an agglomerate T ∈ T H are the ones whose basis
functions have supports intersecting T , and the restrictions of those basis functions
(i.e., the coarse shape functions) on T are precisely the restrictions of the respective
algebraic vectors on the Vh(Di)-dofs of T , which are the Vh(Di)-dofs associated
with the fine elements τ ∈ T h such that τ ⊂ T . Therefore, local-on-T prolongation
matrices PT,i can be defined and they are submatrices of Pi on the respective dofs in

Vh(Di) and VH(Di) on T .



PARALLEL AMGE FOR H(curl) AND H(div) USING PARELAG 9

Co-chain projectors ΠH
i are (right) inverses of the prolongation operators Pi, i.e.

they satisfy

(3.4) ΠH
i ◦ Pi = IHi for i = 1, . . . , 4,

where IHi denotes the identity operator in VH(Di). Their construction parallels that of
the coarse basis functions, starting from the projection of coarse dofs associated with
local lower-dimensional entities and moving towards higher-dimensional local entities.
Specifically, projection operators are obtained via independent local agglomerate-
by-agglomerate procedures. The local projection operators can be pieced together
to form the global ΠH

i , since, by construction, these local projectors agree on dofs
shared between coarse entities. The independent production of each such local
projection operator involves the inversion of a small coarse-scale local mass matrix
on the respective coarse entity. More details can be found in [49]; see also [56, 47].

It is worth highlighting that co-chain projection operators do not merely constitute
a theoretical tool, but they are needed for the construction of the coarse level
auxiliary space preconditioners described in Section 4.2. Moreover, they are needed
in the implementation of multilevel Monte Carlo methodologies [54, 53] and efficient
multilevel nonlinear solvers like FAS (full approximation scheme) [45].

3.2.2. Coarse exterior derivatives. The commutativity property (3.3) implies that the
coarse exterior derivatives DH

i can be formally defined in terms of the prolongation
Pi, cochain projector ΠH

i+1, and finer level exterior derivative Dh
i as

DH
i = ΠH

i+1 ◦Dh
i ◦ Pi,

as can be easily shown by (right-)multiplying (3.3) by Pi and using (3.4).
In ParELAG, the coarse exterior derivatives DH

i are constructed via independent
local agglomerate-by-agglomerate procedures starting from lower-dimensional entities
(agglomerated faces for DH

3 , agglomerated edges for DH
2 , and agglomerated vertices

for DH
1 ) to agglomerated elements T . The global exterior derivative operator DH

i is
then constructed by an overwriting assembly of local-on-T coarse exterior derivatives
DH
T,i in a similar manner to the assembly of the finite element level operators discussed

in Section 2.2. Note that, differently from matrices arising from discretizations of
variational forms, at each level of the hierarchy the restrictions of the exterior
derivative to a single entity or to the union of connected entities (agglomerate) are
submatrices of DH

i .

3.2.3. Coarse system matrices. Next, the construction of system matrices at coarse
levels of the AMGe hierarchy is presented. Consider a bilinear form aij(·, ·) defined
on H(Di)×H(Dj) for some i, j = 1, . . . , 4. By means of Galerkin projection onto

the finite element bases of the conforming discrete subspaces Vh(Di) and Vh(Dj),

the bilinear form is represented by a (global) matrix Ahij ∈ Rd
h
j×dhi on the dofs in

Vh(Di) and Vh(Dj). That is, for every entry of Ahij indexed (l, k), it holds

(Ahij)lk = aij(φ
h
i,k, φ

h
j,l) for l = 1, . . . , dhj , k = 1, . . . , dhi ,

where {φhi,k}
dhi
k=1 denotes the basis of Vh(Di). This global matrix is obtained via

a standard assembly from local element matrices Ahτ,ij for the elements τ ∈ T h

formulated on the Vh(Di) and Vh(Dj)-dofs associated with τ . The coarse matrices
are produced by standard “RAP” procedures. Indeed, the representations of aij(·, ·)
in terms of the bases of VH(Di) and VH(Dj) is the matrix AHij = P Tj A

h
ijPi ∈ Rd

H
j ×dHi .



10 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

DeRhamSequence

DeRhamSequenceAlgDeRhamSequenceFE

DeRhamSequence3D_FEDeRhamSequence2D_Hdiv_FE

Figure 3.3. An illustration of the hierarchy of ParELAG classes for
de Rham sequences.

Also, for T ∈ T H , using a standard assembly locally with Ahτ,ij for τ ⊂ T , the local-

on-T fine-scale matrix AhT,ij is obtained on the Vh(Di) and Vh(Dj)-dofs associated

with T . Thus, AHT,ij = (PT,j)
TAhT,ijPT,i forms the coarse element matrices, which can

produce AHij via a standard assembly.

3.2.4. ParELAG’s implementation of AMGe hierarchies of de Rham sequences. Par-
ELAG implements the construction and coarsening of de Rham sequences via the
small hierarchy of classes depicted in Fig. 3.3. The base class is DeRhamSequence,
which contains the main toolset necessary for constructing and working with de
Rham sequences, including the procedures for building coarse spaces outlined in
this paper. Two subclasses provide specialized methods for de Rham sequences
on the finest (geometric) level (DeRhamSequenceFE), which is produced employing
MFEM, and algebraic levels (DeRhamSequenceAlg), which are coarse levels produced
by ParELAG that are not associated with a given mesh (i.e., that are not geometric).
The class DeRhamSequenceFE is further specialized to address special cases like the
dimensionality of the domain.

3.3. Coarse bases and the extension procedure. The abstract construction of
coarse basis functions, which is applicable on all levels, is outlined now. The target
traces and the extension process are discussed. A detailed presentation of a closely
related procedure for coarse space construction can be found in [49].

3.3.1. Overview. The coarse mesh T H with all its entities (elements or agglomerates,
facets, edges, and vertices) and its topology is available. Note that coarse basis
functions are obtained in terms of the fine ones using an extension procedure involving
the solution of local finite element problems, which translates into inverting local
matrices. This uses information on the association between fine dofs and coarse
entities, which is easily derived from the association between fine dofs and the fine
entities that constitute each coarse entity. In the terminology of ParELAG, this is
called dof agglomeration (or aggregation), implemented in the DofAgglomeration

class.
As indicated in Section 3.2, the extension can be viewed in the local context of an

agglomerate T ∈ T H and its associated lower-dimensional coarse entities. Note that
some basis functions are supported on multiple agglomerates. Nevertheless, they
are constructed by independent local agglomerate-by-agglomerate processes. The
procedures executed on a single agglomerate T produce the respective shape functions.
Shape functions that form a particular basis function are conforming, i.e. they agree
on fine-scale dofs shared between agglomerates. In the formation of the prolongation
matrices, the final basis functions are obtained by joining together all associated shape
functions. The shape functions on T alone comprise the local-on-T prolongation
matrices, PT,i; see Section 3.2. Other basis functions are entirely supported in a



PARALLEL AMGE FOR H(curl) AND H(div) USING PARELAG 11

single agglomerate T . As it is customary, they are called bubble functions; see [17].
More specifically, for i = 1, . . . , 3, a Vh(DT,i; T ) bubble function is fully supported
in T , and it is globally a function in H(Di; Ω), i.e., has a vanishing γi-trace (see
Section 2.2) on ∂T . Figure 3.4 illustrates coarse basis functions on agglomerates in
two dimensions.

The construction of the coarse shape functions for all spaces in the sequence is
summarized in the diagram below, where V , E, F , and T represent an agglomerated
vertex, edge, face, and element, respectively, and DX,i the restriction of the exterior
derivative Di (i = 1, . . . , 3) to entity X (X ∈ {V,E, F, T}).

VH(DV,1; V ) J

VH(DE,1; E) VH(DE,2; E) 	J

VH(DF,1; F ) VH(DF,2; F ) 	 VH(DF,3; F ) 	J

VH(DT,1; T ) VH(DT,2; T ) 	 VH(DT,3; T ) 	 VH(DT,4; T ) 	J

(3.6)

(3.8)

(3.7)

(3.6)

(3.8)

(3.9)

(3.8)

(3.7)

(3.6)

(3.9) (3.9) (3.7)

The symbols 	 and J denote, respectively, the insertion—after filtering out linear
dependencies—of the approximation property targets (Section 3.3.2) and the construc-
tion of the PV traces (Section 3.3.3). Vertical arrows denote boundary extensions
from lower-dimensional entities to higher-dimensional ones, while horizontal arrows
denote cross-space extensions necessary to ensure the exactness property (3.2). The
label next to each arrow represent the local PDE that is solved to compute the
extension (cf. Section 3.3.4).

Given a finer level hierarchy, the construction of the coarse level sequence starts
from the trace spaces on the main diagonal of the diagram and moves towards the
bottom left corner of the diagram using the boundary and cross-space extension
operators. Particularly, for any i ∈ [1, 4] and any sensible coarse entity X, coarse
basis functions (or traces thereof) on X are obtained, either from given targets or
via local computational procedures like the extensions below, as vectors in Vh(DX,i;

X) on the respective finer dofs, thus building the coarse VH(DX,i; X) by producing

its basis and the corresponding coarse VH(DX,i; X)-dofs associated with X.

Remark 3.1. In ParELAG, the extension operators in (3.6), (3.7), (3.8), (3.9) can
be attuned to the particular problem to be solved. For example, the coefficients α
and β in (2.1) are incorporated in the appropriate local PDEs. Thus, the extension
procedure can be informed about the particular problem of interest and the obtained
coarse bases become problem-dependent.

3.3.2. Approximation property targets. The first step is to select so called targets.
The results in this paper are obtained using global polynomial targets due to their
simplicity and inherent approximation properties following from standard polynomial
approximation theory. Global polynomial targets are set once in ParELAG on the
finest level via simple call to the SetUpscalingTargets() member function of the
DeRhamSequenceFE class. The procedure in ParELAG for building the targets is quite
simple. On the finest level, the finite element interpolants (via Πh

i ) of monomials
up to a prescribed order constitute the targets. On coarse levels, the targets are
transferred as needed via projection, i.e., by applying the operators ΠH

i , i = 1, . . . , 4.
Note that it is admissible to utilize polynomial targets of order higher than the



12 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

(a) Coarse elements (b) H1 boundary basis function (c) H1 interior basis function

(d) H1 bubble basis function (e)H(div) boundary basis function (f) H(div) interior basis function

(g) H(div) bubble basis function (h) L2 basis function

Figure 3.4. A two-dimensional illustration of coarse basis functions.
Their supports match exactly the respective coarse elements.

order of the finest-level finite elements. In such a case, coarse basis functions have
a high-order complexion but are represented piecewise by lower-order polynomials.
Alternatively, local targets on coarse entities can be obtained by, e.g., solving local
eigenvalue problems, which also provide approximation properties (cf. [39, 18]). In
any case, for the approach outlined here, appropriate respective target traces on
coarse entities (elements or agglomerates, facets, edges, vertices) are obtained and
available as needed, represented in terms of respective Vh(Di) dofs, i = 1, . . . , 4.

3.3.3. PV traces and coarse trace spaces. The lowest-dimensional traces for VH(Di),
i = 1, . . . , 4, from which extensions are initiated, are defined on agglomerated vertices,
edges, facets, and elements, respectively. On these entities, the so called PV traces
(coming from [56]) are locally defined agglomerated entity by agglomerated entity.
These traces alone provide, once extended following Section 3.3.4, the lowest-order



PARALLEL AMGE FOR H(curl) AND H(div) USING PARELAG 13

stable coarse spaces on T H . Specifically, the PV traces φVPV,1 ∈ VH(DV,1; V ),

φE
PV,2

∈ VH(DE,2; E), φF
PV,3

∈ VH(DF,3; F ), and φTPV,4 ∈ VH(DT,4; T ) are defined

to have unit integral on the corresponding agglomerated entity, V , E, F , and T .
That is, the representation of the PV traces in terms of finer level dofs are given by

(3.5)

φVPV,1 = φvPV,1 = 1, v ≡ V (v is the fine vertex forming V )

φE
PV,2
· τE =

∑
e⊂E(ϕE)e φ

e
PV,2
· τ e, satisfying

∫
E φE

PV,2
· τE d` = 1,

φF
PV,3
· nF =

∑
f⊂F (ϕF )f φ

f
PV,3
· nf , satisfying

∫
F φF

PV,3
· nF dσ = 1,

φTPV,4 =
∑

τ⊂T φ
τ
PV,4, satisfying

∫
T φ

T
PV,4 dΩ = 1,

where τE and τ e are the corresponding tangent vectors to the coarse edge E and its
constituting fine edges, e, nF and nf are the corresponding normal vectors to the
coarse facet F and its constituting fine facets, f , and the already available fine-scale
PV traces φvPV,1, φe

PV,2
, φf

PV,3
, and φτPV,4 are utilized. Above, the quantities (ϕE)e

and (ϕF )f denote the reciprocal orientation of the fine edge e or fine facet f and
coarse edge E or coarse facet F ; see Section 3.1.

Next, approximation targets are added to the coarse space after removing any linear
dependence. Specifically, coarse basis functions orthogonal (with respect of the L2

inner product on those entities) to the PV traces and among each other are generated
using SVD and local mass matrices formulated on the respective agglomerated entities.
Doing so, all coarse basis functions, apart from those stemming the PV traces, have
a zero mean and the corresponding trace-space mass matrices produced via RAP on
all algebraic levels are diagonal.

Note that this concludes the construction of the space VH(D4) =
⊕

T∈TH V
H(DT,4;

T ) and no extension procedure is needed for this space.

3.3.4. Extension process. The extension procedure moves from right to left in the de
Rham sequence (3.1) and it considers two types of extensions: boundary extensions
from lower to higher dimensional entities and cross-space extensions to ensure the
exactness of the coarse sequence. A detailed explanation of the extension process
is provided here and an expository illustration is shown in Fig. 3.5. For further
analysis, including the feasibility of the extension problems, the demonstration of
the exactness (3.2) and commutativity (3.3) properties, see [49].

Extension from the lowest-dimensional traces. The first extension is from the lowest-
dimensional, for the respective space, agglomerated entity to a one-dimension-higher
agglomerated entity; see Figs. 3.5a and 3.5b for an illustration. That is, for i =
1, . . . , 3, the extensions are respectively vertex to edge, edge to facet, and facet to
element. The discussion here is associated with the method hFacetExtension() of
the class DeRhamSequence, called within DeRhamSequence::Coarsen().

Let L be a lowest-dimensional entity, K a one-dimension-higher entity such that
L ⊂ ∂K, and µ ∈ Vh(DL,i; L) be a given target trace on L. Denote with DK,i the
restriction of the differential operator Di to the entity K, and with D∗K,i its adjoint.
The discretized version of DK,i is obtained by extracting the corresponding submatrix

from Dh
i , while the discretized adjoint is obtained by matrix transposition. Also,

introduce the trace operator γK,i : Vh(DK,i; K) 7→ Vh(D∂K,i; ∂K), which is defined
in Section 2.2 for an arbitrary domain Ω. Namely, for i = 1, . . . , 3, L is respectively
an agglomerated vertex, edge, and facet, while γK,i on L is respectively a point value
on the vertex, tangential flow on the edge, and normal flux on the facet. Using the
above notation, the extension of µ to K, φe ∈ Vh(DK,i; K), is obtained by solving



14 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

extension−−−−−−→

(a) Extension of the PV trace on the agglomerated facet

extension−−−−−−→

(b) Extension of a trace, on the agglomerated facet, L2-
orthogonal to the PV trace

extension←−−−−−−

(c) Cross-space extension from an L2 basis function to an H(div) bubble function

Figure 3.5. A two-dimensional illustration of local extension proce-
dures producing shape functions in H(div) on a sample agglomerated
element, involving respective traces on an agglomerated facet (marked
with a light shade) and bubble functions in the agglomerate.



PARALLEL AMGE FOR H(curl) AND H(div) USING PARELAG 15

the local PDE formally expressed as:

(3.6)


φe +D∗K,i ψ = 0 in K,

DK,i φe = c φKPV,i+1 in K,

(ψ, φKPV,i+1)L2(K) = 0 in R,
γK,i φe = µ on L,
γK,i φe = 0 on ∂K \ L,

where φKPV,i+1 is the PV trace in Vh(DK,i+1; K) associated with K, ψ is a local-on-K

function in Vh(DK,i+1; K), and c is the scalar Lagrangian multiplier associated with

the orthogonality constraint (ψ, φKPV,i+1)L2(K) = 0. The orthogonality constrain
guarantees the solvability of the above problem by ensuring that ψ has zero mean
on K. The value of c = (µ, φLPV,i)L2(L) is determined by use of the Stokes’ theorem

thanks to (3.5).
Next, Vh(DK,i; K) bubble functions on K are obtained by a cross-space extension

from Vh(DK,i+1; K) to Vh(DK,i; K); see Fig. 3.5c for an illustration. This is necessary
to preserve the exactness of the coarse sequence; see (3.2). For each target trace
φK⊥,i+1 ∈ Vh(DK,i+1; K) such that (φK⊥,i+1, φ

K
PV,i+1)L2(K) = 0, the corresponding

bubble function, φb ∈ Vh(DK,i; K), is obtained by solving

(3.7)


φb +D∗K,i ψ = 0 in K,

DK,i φb = φK⊥,i+1 + c φKPV,i+1 in K,

(ψ, φKPV,i+1)L2(K) = 0 in R
γK,i φb = 0 on ∂K,

where ψ ∈ Vh(DK,i+1; K) is also zero-mean, c = 0, and the constraint serves to
stabilize the system.

Finally, to ensure the approximation properties, additional DK,i-free bubble func-

tions3 in Vh(DK,i; K) are produced by projecting the given target traces in Vh(DK,i;
K) associated with K onto the respective space of DK,i-free bubble functions and
filtering out any linear dependence.

Upon completion of all the extensions in this steps, shape functions, co-chain
projectors and exterior derivative operators for the spaces VH(DE,1; E), VH(DF,2;

F ), VH(DT,3; T ) are defined for all coarse edges E, facets F , and elements T of the

coarse mesh. In particular, the construction of VH(D3) =
⊕

T∈TH V
H(DT,3; T ) is

now complete.

Further extensions to higher-dimensional agglomerated entities. For the case of i = 2,
one more extension step (facets → elements) is necessary, while two such steps
(edges → facets → elements) are required for i = 1. Each such step has the form
presented below. The discussion here, for each extension step, is associated with
the method hRidgePeakExtension() of the class DeRhamSequence, called within
DeRhamSequence::Coarsen().

Let N be a lower-dimensional agglomerated entity (but not a lowest-dimensional
one), M a one-dimension-higher agglomerated entity such that N ⊂ ∂M , and
η ∈ Vh(DN,i; N) a trace on N produced by a previous (lower-dimensional) extension.

Let sη ∈ Vh(DM,i+1; M) be the extension of DM,iη from N to M . Note the sη is

known since the spaces VH(DN,i; N) and VH(DM,i+1; M) were already constructed

3That is, functions φ ∈ Vh(DK,i; K) such that DK,iφ = 0 and γK,iφ = 0.



16 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

during the previous extension step. Then, the respective extension of η to M , φE , in
Vh(DM,i; M) is obtained by solving the following formal local PDE:

(3.8)


φE +D∗M,i χ = 0 in M,

DM,i φE −D∗M,i+1DM,i+1 χ = sη in M,

γM,i φE = η on N,
γM,i φE = 0 on ∂M \N,

where χ is a local-on-M function in Vh(DM,i+1; M). Above the stabilization term
D∗M,i+1DM,i+1 χ is added to guarantee the uniqueness of χ.

To ensure the exactness (3.2), Vh(DM,i; M) bubble functions on M must be

included. These bubble functions, φB, are such that DM,iφB = φM0,i+1, where

φM0,i+1 ∈ Ker(DH
M,i+1) ⊂ VH(DM,i+1; M) but expressed in practice in fine-scale

Vh(DM,i+1; M)-dofs. Note that a basis of Ker(DH
M,i+1) was already constructed in

the previous extension step and it is associated with respective DM,i+1-free bubble
functions and target traces with a zero mean (i.e., orthogonal to the respective PV
targets) in VH(DM,i+1; M). Then, for each such φM0,i+1, the corresponding bubble
function, φB, is obtained by solving

(3.9)


φB +D∗M,i χ = 0 in M,

DM,i φB −D∗M,i+1DM,i+1 χ = φM0,i+1 in M,

γM,i φB = 0 on ∂M.

Note that the stabilization term D∗M,i+1DM,i+1 χ is zero for this particular choice of
right hand size.

In the end, the given target traces in Vh(Di) associated with M are projected on
the space of DM,i-free bubble functions on M in Vh(DM,i; M) and added towards

the basis (possibly awaiting further extension) for VH(DM,i; M), after filtering out
any linear dependence.

After one sweep of the above procedure, the space VH(D2) =
⊕

T∈TH V
H(DT,2;

T ) is finalized, while an additional sweep is needed for constructing VH(D1) =⊕
T∈TH V

H(DT,1; T ) and thus completing the coarse sequence. Finally, note that

approximation targets are not included in VH(D1), since any such bubble function
would vanish everywhere.

4. Smoothers, coarse solvers, and the multigrid

This section is devoted to describing a scalable multigrid preconditioner for the
finite element matrices stemming from discretizations of the bilinear forms in (2.1)
attuned to the AMGe hierarchies of de Rham sequences as constructed by ParELAG
(see Section 3).

Multigrid preconditioners, implemented via multilevel cycles such as the well-
known V-cycle in Algorithm 4.1 (see [61]), have three main components: a hierarchy
of spaces given in the form of a hierarchy of prolongator/restriction operators, a
relaxation (or smoothing) procedure, and a solver or preconditioner for the coarsest
problem.

In Algorithm 4.1, ` denotes the number of levels in the hierarchy, and l the current
level in the hierarchy. As usual in algebraic multigrid literature, the finest level
(where the matrix A and right end side b are defined) is denoted by l = 1 and P kk+1 is
the prolongator from level k + 1 to level k. The smoothing procedure and prologator
operator at level l in the hierarchy are denoted by Ml and P ll+1, respectively, while

the coarse grid solver is denoted by B−1
` . Externally, the procedure is invoked with



PARALLEL AMGE FOR H(curl) AND H(div) USING PARELAG 17

Algorithm 4.1 A procedure implementing a single multilevel V-cycle. Computes
the effect of a multilevel preconditioner B−1

ML, i.e., xML = x0 +B−1
ML(b−Ax0).

PROCEDURE: xML ←ML
(
A, b, x0, {Mk}`−1

k=1, {P kk+1}
`−1
k=1, B

−1
` , l

)
INPUT: A matrix A, a right-hand side vector b, a current iterate x0, a hierarchy of
relaxation {Mk}`−1

k=1 and prolongation {P kk+1}
`−1
k=1 operators, a solver or preconditioner

B−1
` on the coarsest level, and a current level l.

OUTPUT: A new multigrid iterate xML ← x.
STEPS:
Initialize: x← x0.
Pre-relax: x← x +M−1

l (b−Ax).

Correct (evoke B−1
` or recurse):

if l = `− 1 (i.e., coarsest level reached) then
ec ← B−1

` (P ll+1)T (b−Ax);
else

ec ←ML
(
(P ll+1)TAP ll+1, (P ll+1)T (b−Ax), 0, {Mk}`−1

k=1, {P kk+1}
`−1
k=1, B

−1
` , l + 1

)
;

end if
x← x + P ll+1 ec.

Post-relax: x← x +M−T
l (b−Ax).

l = 1 and it calls itself recursively for an increasing value of l, until the coarsest level
l = ` is reached. Note that while in principle Algorithm 4.1 can be used standalone
iteratively to obtain a stationary (or fixed-point) iterative method, the main interest
here is to apply the preconditioner B−1

ML within a preconditioned conjugate gradient
(PCG) method. In that case, Algorithm 4.1 is invoked at each PCG iteration with
x0 = 0 and b denoting the residual at the current iteration.

In what follows, ADi denotes the finite element matrix stemming from a discretiza-
tion of the bilinear form aDi(u, v) = (αiDiu,Div)0 + (βi u, v)0 for u, v ∈ H(Di) and
αi > 0, βi ≥ 0. The cases i = 2, 3 corresponds, respectively, to the H(curl) and
H(div) forms in (2.1) considered here. By use of the ParELAG prologation operators

{P kk+1}
l−1
k=1, the Galerkin projections of ADi at a generic coarse level l+ 1 are defined

as Al+1
Di

= (P ll+1)TAlDi
P ll+1, where A1

Di
= ADi = AhDi

corresponds to the finest level

(i.e., the finite element level).
The constructions of hybrid (“combined” a.k.a. “Hiptmair”) smoothers Ml for AlDi

and coarse AMS/ADS solvers B−1
` for A`Di

are respectively described in Sections 4.1
and 4.2. For the coarse solvers, in particular, ParELAG constructs the transition
and projection operators on the AMGe coarse de Rham sequence, which mimic those
of the fine-grid de Rham sequence constructed in MFEM, for use within the AMS
and ADS solvers in the HYPRE library [1].

4.1. Relaxation via hybrid smoothers. A general level-independent smoothing
procedure based on [32] (see also [61, Appendix F]) is outlined here, providing the
relaxation processes {Mk} in Algorithm 4.1 for all levels.

For each matrix AlDi
, let M l

Di
denote the corresponding (point) smoother, e.g. a

Jacobi-type, Gauss-Seidel-type, or their block or `1-scaled variants smoother. It is
well known [10] that these type of smoother do not lead to optimal (mesh independent)
multigrid preconditioners for H(curl) and H(div) forms, due to the large near-null-
space of these operators. Hybrid smoothers need to “reach” in the reverse direction of
the de Rham sequence to perform an additional smoothing step on the near-null-space
components.



18 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

Specifically, hybrid smoothers leverage certain decompositions of the spaces and
the exactness of the de Rham sequence (3.2), similar to the methods in Section 4.2
below. For i = 2, 3, at a generic level l of the hierarchy, the stable decomposition
V l(Di) = Ker(Dl

i)⊕[Ker(Dl
i)]
⊥ allows to define efficient smoothers for each component

separately. Smoothing the [Ker(Dl
i)]
⊥ component is addressed by M l

Di
. Smoothing

the component in Ker(Dl
i) requires the construction of a point smoother M l

Di−1

for the auxiliary matrix (Dl
i−1)TAlDi

Dl
i−1, where the transition operator Dl

i−1 is an
exterior derivative at level l constructed in ParELAG.

Then, for i = 2, 3, the smoothing step x1 = x0 + (Ml
Di

)−1(b− AlDi
x0) with the

combined smoother (Ml
Di

) reads

x 1
2

= x0 + (M l
Di

)−1(b−AlDi
x0),

x1 = x 1
2

+Dl
i−1 (M l

Di−1
)−1 (Dl

i−1)T (b−AlDi
x 1

2
).

(4.1)

That is, the error propagation operator satisfies

I − (Ml
Di

)−1AlDi
=
[
I −Dl

i−1 (M l
Di−1

)−1 (Dl
i−1)T AlDi

] [
I − (M l

Di
)−1AlDi

]
.

Notice that, since Dl
iD

l
i−1 = 0 (see (3.2)), recursively utilizing Ml

Di−1
in place of

M l
Di−1

in (4.1) changes nothing. Therefore, there is no need to “reach” further

than one step backwards into the de Rham sequence. To compute an iteration with
(Ml

Di
)−T , reverse the order of the steps in (4.1), while respectively using (M l

Di
)−T

and (M l
Di−1

)−T in place of the ones in (4.1).

In the numerical results presented in Section 5, the so called `1-scaled symmetric
block Gauss-Seidel smoother [12], as implemented in HYPRE, is used for all M l

Di
.

For more details on the analysis of the hybrid approach in a multigrid setting, which
counts on the exactness property (3.2), see [61, Appendix F].

4.2. Coarse solvers using AMS and ADS. Similarly to Section 4.1, special (a.k.a.
regular) decompositions (cf. [35]) of the finite element spaces of interest are used to
break the problem of obtaining a holistic preconditioner into the preconditioning of
each component of the decomposition. This provides an auxiliary space preconditioner
that reduces the problem to preconditioning a few H1-type forms, which can be
efficiently addressed by AMG, and smoothing. As a part of HYPRE, BoomerAMG
is used in this case. In this work, AMS and ADS, possibly wrapped in PCG and
performing multiple iterations up to a given tolerance, are to be used as coarse solvers
B−1
` in Algorithm 4.1.
To understand how to generalize AMS and ADS to the coarse problems gen-

erated by ParELAG, a brief overview of these methods applied to the finite ele-
ment discretization level is presented below. To this aim, the finite element space
Vh(D1) = Vh(grad) = [Vh(grad)]3 of vectorial H1-conforming functions is introduced.

Next, for i = 2, 3 the interpolation operators Π̂h
i : Vh(D1) 7→ Vh(Di) are constructed

by mean of an overwriting assembly procedure collecting the local (element-by-
element) versions of these operators.

Using the exterior derivative Dh
i−1 and the newly introduced interpolator Π̂h

i , an

arbitrary function vh ∈ Vh(Di) (i = 2, 3) admits the stable decomposition [35]

vh = ṽh + Π̂h
i r

h +Dh
i−1z

h for vh ∈ Vh(Di), i = 2, 3,



PARALLEL AMGE FOR H(curl) AND H(div) USING PARELAG 19

where ṽh ∈ Vh(Di), rh ∈ Vh(grad), and zh ∈ Vh(Di−1). Based on the above
decomposition, (an additive version of4) the auxiliary space preconditioner has the
form [43, 44]

(4.2) (Bh
Di

)−1 = (Mh
Di

)−1 + Π̂h
i (Bh

H1)−1 (Π̂h
i )T +Dh

i−1 (Bh
Di−1

)−1 (Dh
i−1)T ,

where Mh
Di

is a smoother for AhDi
and Bh

H1 is an AMG preconditioner (e.g. Boomer-

AMG) of the vector H1-type matrix AhH1 = (Π̂h
i )TAhDi

Π̂h
i , and Bh

Di−1
is a multilevel

preconditioner for AhDi−1
= (Dh

i−1)TAhDi
Dh
i−1. Note that, for i = 2, the matrix

AhDi−1
is equivalent to the discretization of an H1-conforming form, and thus can be

preconditioned using AMG. For i = 3, AhDi−1
is equivalent to the discretization of a

singular H(curl)-conforming form, thus requiring the use of another auxiliary space
preconditioner (4.2) with i = 2.

The auxiliary space preconditioner (4.2) can be seamlessly generalized to the
preconditioning the coarse matrices A`Di

(i = 2, 3), generated using the ParELAG
hierarchy of nested de Rham sequences, by replacing the finite element exterior

derivative Dh
i−1 and interpolation operator Π̂h

i with their coarse level counterparts.

In particular, the coarse level interpolation operator Π̂`
i : V`(grad) → V`(Di) is

constructed in ParELAG by means of a RAP procedure from the finer level inter-
polator. That is, denoting the vectorial counterpart of the ParELAG prolongator

(P1)ll+1 : V l+1(D1) 7→ V l(D1) by P̂ ll+1 : V l+1(D1) 7→ V l(D1), Π̂`
i is obtained by

applying `− 1 times the recursion

Π̂ l+1
i = (Πi)

l
l+1 Π̂

l
i P̂

l
l+1, l = 1, . . . , `− 1,

where Π̂1
i = Π̂h

i is the interpolation operator at the finite element discretization
level (provided by MFEM) and (Πi)

l
l+1 denotes the respective ParELAG-generated

co-chain projector from level l onto level l + 1.

4.3. Overview of composite solvers in ParELAG. The ParELAG library pro-
vides access to a variety of solvers for sparse linear systems, including for block
systems. Some of them are implemented within ParELAG itself, like the hybrid
smoothers of Section 4.1 and the V-cycle of Algorithm 4.1 for AMGe, while others
make use of external libraries, such as HYPRE, MFEM, SUPERLU DIST, and
STRUMPACK. Furthermore, solvers can be combined into a composite solver for
the linear system of interest.

ParELAG achieves this by first generating a solver (or preconditioner) library
(an object of class SolverLibrary) from a XML configuration file with a very
intuitive syntax. Such a file declares all the solvers and preconditioners needed by
the application, together with their specific parameters and how they are combined.
A solver is declared by assigning a name and a list of parameters for a particular
method internally provided by ParELAG. For example, one can declare a solver
in the XML file that represents a multigrid method like the one in Algorithm 4.1
and appoint other solvers from the solver library to act as smoothers and coarse
solvers, which have their own sets of parameters and may, in turn, internally employ
other solvers or preconditioners from the solver library. The static member function
CreateLibrary() is defined to instantiate a SolverLibrary object from the provided
XML configuration file.

4Several different variations, including multiplicative and ones that treat Vh(grad) in a scalar
component-wise fashion, are implemented in HYPRE [1].



20 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

(α, β) = (1.641, 0.2) (α, β) = (0.00188, 2000)

Figure 5.1. Domain, initial or starting mesh (including a close-up
of the graded mesh in the upper right) of 116640 hexahedral elements,
and piecewise constant coefficients for the numerical examples.

To instantiate a solver, users first interrogate the SolverLibrary by calling its
member function GetSolverFactory(), which returns a solver factory (an object
of class SolverFactory) for the desired solver. The solver (i.e. an object of class
Solver5) is then instantiated by calling the member function BuildSolver() of
SolverFactory. For solving a linear system, users then call the Mult() member, as
they would do with any linear solver implemented in MFEM. Such a paradigm of
solver structuring may sound familiar to a reader that has been exposed to some of
the popular available solver libraries.

Examples of XML configuration files for solving the H(curl) and H(div) problems
presented in Section 5 are included in the ParELAG mini applications of MFEM.
Additional examples to configuring solver factories for AMS, ADS, Krylov space
methods, hybrid smoothers, AMGe cycles, block preconditioners, and other methods
within HYPRE and MFEM, can be found in the ParELAG library.

5. Numerical examples

This section contains numerical results employing ParELAG in the context of
the discussed AMGe multigrid solvers for (2.1). The results are produced using the
ParELAG mini applications [4] in MFEM.

5.1. On the benchmark problem. The benchmark considered here is inspired
by the so-called “crooked pipe” problem (see [30, 28, 44]). This involves solving
H(curl) and H(div) forms with scalar discontinuous coefficients with large jumps
on a graded mesh with highly stretched (anisotropic) elements. For demonstration,
the methodology is applied for solving linear systems coming from discretizations
of formulations using the bilinear forms in (2.1), a constant right-hand side, and

5Solver is a virtual class defined in MFEM.



PARALLEL AMGE FOR H(curl) AND H(div) USING PARELAG 21

homogeneous essential boundary conditions for simplicity. The computational domain
comprised of two different materials and the (coarsest) finite element mesh are depicted
in Fig. 5.1. The coefficients are set as (α, β) = (1.641, 0.2) in the outer material
(depicted with the lighter color) and (α, β) = (0.00188, 2000) in inner core (depicted
with the darker color).

The systems coming from (2.1) are solved using inexact PCG (see, e.g., [29])
preconditioned by a single AMGe V-cycle; see Section 4. The iterative process is
stopped when the relative size of the residual, measured by the preconditioner-induced
norm, is reduced by six order of magnitude (i.e. 10−6 relative tolerance).

The V-cycles use AMGe hierarchies, as described above, and hybrid smoothers
for pre and post-relaxation; see Section 4.1. An application of the hybrid smoother
invokes two sweeps of `1-scaled symmetric block Gauss-Seidel for each primary and
auxiliary smoothings within the hybrid approach. A fixed number of five iterations of
PCG preconditioned by AMS or ADS, respectively, serves as a solver on the coarsest
level6; see Section 4.2.

In the tests, the mesh in Fig. 5.1 is uniformly refined multiple times to obtain a
fine-grid problem, which is consequently solved in parallel by the methods discussed
in this paper. Weak scaling experiments are considered here. That is, as the mesh is
refined the number of processors is also increased so that the number of elements per
processor is maintained constant.

5.2. Results. Computational results on solving systems induced by (2.1) in parallel
for these generally challenging problems are presented here, employing lowest order
finite elements and uniformly refining the initial mesh in Fig. 5.1. The tests utilize
the Quartz cluster at Lawrence Livermore National Laboratory. It is equipped on
each node with 128 GB of memory and two 18-core Intel Xeon E5-2695 v4 CPUs
at 2.1 GHz, resulting in 36 computational cores per node, and the total number
of computational nodes (cores) is 2,988 (107,568). The peak single CPU memory
bandwidth is 77 GB/s and the Cornelis Networks Omni-Path provides the inter-node
connection.

The number of PCG iterations (ite), the number of dofs, and the number of
elements (elems) on the finest level are reported, as well as the number of uniform
mesh refinements (refs) employed to obtain the fine mesh, the total number of levels
(denoted by `) in the AMGe hierarchy, and the number of utilized processors7 (procs).
Also, the grid complexity (GC) is reported, which is the total number of dofs in the
hierarchy, respectively of nested subspaces of H(curl) or H(div), over the number of
finest dofs.

For comparison, results obtained with PCG preconditioned by HYPRE AMS and
ADS acting on the finite element level are also presented. These includes the number
of iterations (ita) and wall-clock timings.

Problem information and solvers iterations are shown in Table 5.1 for both H(curl)
and H(div). Two test cases are demonstrated: one where the number of AMGe
levels is kept fixed (equal to 3) as the fine mesh is refined, essentially also refining
the coarsest level, and another where as the fine mesh is refined the number of levels
is increased so that the coarsest level is constant and coinciding with the initial mesh
presented in Fig. 5.1.

6The particular choice is largely motivated by the objective to demonstrate the flexibility of the
ParELAG SolverLibrary and its ability to combine a variety of solvers and smoothers. Using a
singe or a few applications of the respective AMS or ADS, without PCG, is also a valid option here.
7Strictly speaking, this is the number of individual independent computational units, i.e., cores.



22 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

refs procs elems `
H(curl) H(div)

dofs ite ita dofs ite ita
2 72 7,464,960 3 22,772,484 131 93 22,583,232 36 31

3 576 59,719,680 3 180,667,656 198 118 179,912,448 55 44

4 4,608 477,757,440 3 1,439,303,184 231 148 1,436,285,952 86 60

3 576 59,719,680 4 180,667,656 169 118 179,912,448 54 44

4 4,608 477,757,440 5 1,439,303,184 190 148 1,436,285,952 77 60

Table 5.1. Solver results with lowest order finite elements for both
H(curl) and H(div), as provided by (2.1) and Fig. 5.1. In all cases,
elems / procs = 103,680 and the GC is 1.14.

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

W
a
ll
-c

lo
ck

ti
m

e
(s

ec
o
n
d
s)

Processors

const levels
const coarse

Figure 5.2. Weak scaling of the coarse de Rham sequences build
with lowest order finite elements, where elems / procs = 103,680.

Timing plots, using wall-clock times as reported by the code of the miniapps,
are shown in Figs. 5.2 and 5.3, including wall-clock times for the entire program
executions. In the legend of Fig. 5.3, AMGe(curl) and AMGe(div) denote the AMGe
solvers for the H(curl) and H(div) problems, respectively. The cases of constant
number of levels and a constant size of the coarsest problem are indicated with const
levels and const coarse. Finally, AMS and ADS represent the solvers from the HYPRE
library. The construction of the whole coarse de Rham sequences is reported (Fig. 5.2),
which includes the element agglomeration times, the local extension procedures, and
building other necessary constructs. Notice that the construction time does not grow
much, especially in the case of constant number of levels, since the majority of the
time spent is on the local extension procedures, which scale perfectly, as they involve
no communication.

Observe that the AMGe approach performs well and is comparable to the state of
the art represented by AMS and ADS. Quite interestingly, Fig. 5.3 indicates that
the case of increasing the number of AMGe levels demonstrates better scalability.
To exploit this scalability potential in practice for extremely large problems in the
setting of extreme parallelism, parallel redistribution and load balancing would be
needed on coarse levels obtained via AMGe to allow sufficient coarsening when large
number of processors are utilized. This is a subject of an ongoing work.



PARALLEL AMGE FOR H(curl) AND H(div) USING PARELAG 23

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

W
a
ll
-c

lo
ck

ti
m

e
(s

ec
o
n
d
s)

Processors

(a) Solver initialization

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

W
a
ll
-c

lo
ck

ti
m

e
(s

ec
o
n
d
s)

Processors

(b) Total solve time

0

0.5

1

1.5

2

2.5

3

3.5

4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

W
a
ll
-c

lo
ck

ti
m

e
(s

ec
o
n
d
s)

Processors

(c) Average time per iteration

0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

W
a
ll
-c

lo
ck

ti
m

e
(s

ec
o
n
d
s)

Processors

AMS
AMGe(curl) const levels

AMGe(curl) const coarse
ADS

AMGe(div) const levels
AMGe(div) const coarse

(d) Total program execution

Figure 5.3. Solver weak scaling with lowest order finite elements,
where elems / procs = 103,680.

6. Conclusions and future work

In this paper, we have introduced an AMGe approach for H(curl) and H(div)
formulations. It involves the construction of coarse de Rham sequences on agglomer-
ated meshes, the use of hybrid (Hiptmair) smoothers, and state-of-the-art auxiliary
space multigrid solvers, HYPRE AMS and ADS, for the coarsest level. The methods
are described in detail using the exterior calculus framework, which allows for a
unified (independent of the number of space dimensions) presentation of the local
problems that need be solved to construct the hierarchy of de Rham sequences. A key
characteristic of the AMGe technique implemented in ParELAG is that the de Rham
sequeces at each level of the hierarchy posses the same properties and structures
that are defined at the finite element levels, including boundary attributes, exterior
derivative operators, co-chain projectors, and interpolation operators between spaces.
The paper also provide an overview of the ParELAG implementation of the above
methods. The numerical results presented here demonstrate the good performance



24 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

and weak scaling properties of ParELAG, comparable to the state-of-the-art H(curl)
and H(div) solvers in HYPRE. A potential limitation of the current implementation
is that ParELAG does not, yet, admit agglomerated elements that are shared or
redistributed between processors. The development of such functionality is a currently
ongoing work. Future work also include the implementation of AMGe variants of
the hybridization and static condensation techniques in [24, 41, 40] for solving the
coarsest H(div) problems.

Acknowledgements

The authors would like to acknowledge all the developers and contributors to the
ParELAG library, including Andrew Barker, Thomas Benson, Sara Osborn, and
Chak Shing Lee.

References

[1] HYPRE: Scalable Linear Solvers and Multigrid Methods. http://computing.llnl.gov/

projects/hypre-scalable-linear-solvers-multigrid-methods.
[2] METIS: Graph Partitioning and Fill-reducing Matrix Ordering. http://glaros.dtc.umn.edu/

gkhome/views/metis.
[3] MFEM: Modular Finite Element Methods Library. http://mfem.org. doi:10.11578/dc.

20171025.1248.
[4] ParELAG mini applications in MFEM. https://github.com/mfem/mfem/tree/parelag_

miniapps/miniapps/parelag.
[5] ParELAG: Parallel Element Agglomeration Algebraic Multigrid Upscaling and Solvers. http:

//github.com/LLNL/parelag.
[6] J H Adler and P S Vassilevski. Improving Conservation for First-Order System Least-Squares

Finite-Element Methods. In Oleg P Iliev, Svetozar D Margenov, Peter D Minev, Panayot S
Vassilevski, and Ludmil T Zikatanov, editors, Numer. Solut. Partial Differ. Equations Theory,
Algorithms, Their Appl., pages 1–19, 2013. doi:10.1007/978-1-4614-7172-1_1.

[7] JH Adler and Panayot S Vassilevski. Error analysis for constrained first-order system least-
squares finite-element methods. SIAM Journal on Scientific Computing, 36(3):A1071–A1088,
2014.

[8] Douglas N Arnold, Richard S Falk, and Jay Gopalakrishnan. Mixed Finite Element Approxima-
tion of the Vector Laplace with Dirichlet Boundary Conditions. Math. Model. Methods Appl.
Sci., 22(09):1250024, 2012. doi:10.1142/S0218202512500248.

[9] Douglas N. Arnold, Richard S. Falk, and Ragnar Winther. Preconditioning in H(div) and
applications. Math. Comput., 66(219):957–985, 1997. doi:10.1090/S0025-5718-97-00826-0.

[10] Douglas N Arnold, Richard S Falk, and Ragnar Winther. Multigrid in H(div) and H(curl).
Numer. Math., 85(2):197–217, 2000. doi:10.1007/PL00005386.

[11] Douglas N. Arnold, Richard S. Falk, and Ragnar Winther. Finite element exterior calculus:
from Hodge theory to numerical stability. Bull. Am. Math. Soc., 47(2):281–354, 2010. doi:
10.1090/S0273-0979-10-01278-4.

[12] A Baker, R Falgout, T Kolev, and U Yang. Multigrid Smoothers for Ultraparallel Computing.
SIAM J. Sci. Comput., 33(5):2864–2887, 2011. doi:10.1137/100798806.

[13] Nathan Bell and Luke N Olson. Algebraic multigrid for k-form Laplacians. Numer. Linear
Algebr. with Appl., 15(2-3):165–185, 2008. doi:10.1002/nla.577.

[14] Pavel B Bochev, Christopher J Garasi, Jonathan J Hu, Allen C Robinson, and Raymond S
Tuminaro. An Improved Algebraic Multigrid Method for Solving Maxwell’s Equations. SIAM J.
Sci. Comput., 25(2):623–642, 2003. doi:10.1137/S1064827502407706.

[15] Pavel B Bochev, Jonathan J Hu, Allen C Robinson, and Raymond S Tuminaro. Towards robust
3D Z-pinch simulations: Discretization and fast solvers for magnetic diffusion in heterogeneous
conductors. Electron. Trans. Numer. Anal., 15:186–210, 2003.

[16] Pavel B Bochev, Jonathan J Hu, Christopher M Siefert, and Raymond S Tuminaro. An Algebraic
Multigrid Approach Based on a Compatible Gauge Reformulation of Maxwell’s Equations.
SIAM J. Sci. Comput., 31(1):557–583, 2008. doi:10.1137/070685932.

[17] Daniele Boffi, Franco Brezzi, and Michel Fortin. Mixed Finite Element Methods and Applications,
volume 44 of Springer Series in Computational Mathematics. Springer, Berlin, Heidelberg, 2013.



PARALLEL AMGE FOR H(curl) AND H(div) USING PARELAG 25

[18] Marian Brezina and Panayot S Vassilevski. Smoothed Aggregation Spectral Element Agglomer-
ation AMG: SA-ρAMGe. In Ivan Lirkov, Svetozar Margenov, and Jerzy Waśniewski, editors,
Large-Scale Sci. Comput., pages 3–15, Berlin, Heidelberg, 2012. Springer.

[19] Thomas A Brunner. Forms of Approximate Radiation Transport. Technical report, SAND2002-
1778, Sandia National Laboratories, 2002. doi:10.2172/800993.

[20] Z Cai, R Lazarov, T A Manteuffel, and S F McCormick. First-Order System Least Squares for
Second-Order Partial Differential Equations: Part I. SIAM J. Numer. Anal., 31(6):1785–1799,
1994. doi:10.1137/0731091.

[21] Zhiqiang Cai, Charles Tong, Panayot S Vassilevski, and Chunbo Wang. Mixed finite element
methods for incompressible flow: Stationary Stokes equations. Numer. Methods Partial Differ.
Equ., 26(4):957–978, 2010. doi:10.1002/num.20467.

[22] Zhiqiang Cai, Chunbo Wang, and Shun Zhang. Mixed Finite Element Methods for Incompressible
Flow: Stationary Navier-Stokes Equations. SIAM J. Numer. Anal., 48(1):79–94, 2010. doi:
10.1137/080718413.

[23] T Chartier, R Falgout, V Henson, J Jones, T Manteuffel, S McCormick, J Ruge, and
P Vassilevski. Spectral AMGe (ρAMGe). SIAM J. Sci. Comput., 25(1):1–26, 2003. doi:

10.1137/S106482750139892X.
[24] V Dobrev, T Kolev, C S Lee, V Tomov, and P S Vassilevski. Algebraic Hybridization and Static

Condensation with Application to Scalable H(div) Preconditioning. SIAM J. Sci. Comput.,
41(3):B425–B447, 2019. doi:10.1137/17M1132562.

[25] Hillary R Fairbanks, Sarah Osborn, and Panayot S Vassilevski. Estimating posterior quantity
of interest expectations in a multilevel scalable framework. Numerical Linear Algebra with
Applications, page e2352, 2020.

[26] H.R. Fairbanks, U. Villa, and P.S. Vassilevski. Multilevel hierarchical decomposition of finite
element white noise with application to multilevel markov chain monte carlo. SIAM Journal on
Scientific Computing, in press. arXiv:2007.14440.

[27] Robert D Falgout and Panayot S Vassilevski. On Generalizing the Algebraic Multigrid Framework.
SIAM J. Numer. Anal., 42(4):1669–1693, 2004. doi:10.1137/S0036142903429742.

[28] NA Gentile. Implicit Monte Carlo diffusion—an acceleration method for Monte Carlo time-
dependent radiative transfer simulations. Journal of Computational Physics, 172(2):543–571,
2001.

[29] Gene H Golub and Qiang Ye. Inexact preconditioned conjugate gradient method with inner-outer
iteration. SIAM Journal on Scientific Computing, 21(4):1305–1320, 1999.

[30] F Graziani and J LeBlanc. The crooked pipe test problem. Lawrence Livermore National
Laboratory Report UCRL-MI-143393, 2000.

[31] R Hiptmair. Multigrid method for H(div) in three dimensions. Electron. Trans. Numer. Anal.,
6:133–152, 1997.

[32] R Hiptmair. Multigrid Method for Maxwell’s Equations. SIAM J. Numer. Anal., 36(1):204–225,
1998. doi:10.1137/S0036142997326203.

[33] R Hiptmair. Finite elements in computational electromagnetism. Acta Numer., 11:237–339,
2002. doi:10.1017/S0962492902000041.

[34] R Hiptmair, G Widmer, and J Zou. Auxiliary space preconditioning in H0(curl; Ω). Numer.
Math., 103(3):435–459, 2006. doi:10.1007/s00211-006-0683-0.

[35] R Hiptmair and J Xu. Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces.
SIAM J. Numer. Anal., 45(6):2483–2509, 2007. doi:10.1137/060660588.

[36] Ralf Hiptmair and Andrea Toselli. Overlapping and Multilevel Schwarz Methods for Vector Val-
ued Elliptic Problems in Three Dimensions. In Petter Bjørstad and Mitchell Luskin, editors, Par-
allel Solut. Partial Differ. Equations, pages 181–208, 2000. doi:10.1007/978-1-4612-1176-1_8.

[37] J Jones and B Lee. A Multigrid Method for Variable Coefficient Maxwell’s Equations. SIAM J.
Sci. Comput., 27(5):1689–1708, 2006. doi:10.1137/040608283.

[38] Jim E Jones and Panayot S Vassilevski. AMGe Based on Element Agglomeration. SIAM J. Sci.
Comput., 23(1):109–133, 2001. doi:10.1137/S1064827599361047.

[39] D Z Kalchev, C S Lee, U Villa, Y Efendiev, and P S Vassilevski. Upscaling of Mixed Finite
Element Discretization Problems by the Spectral AMGe Method. SIAM J. Sci. Comput.,
38(5):A2912–A2933, 2016. doi:10.1137/15M1036683.

[40] Delyan Z Kalchev and Panayot Vassilevski. A Condensed Constrained Nonconforming Mortar-
Based Approach for Preconditioning Finite Element Discretization Problems. SIAM J. Sci.
Comput., 42(5):A3136–A3156, 2020. doi:10.1137/19M1305690.



26 DELYAN Z. KALCHEV, PANAYOT S. VASSILEVSKI, AND UMBERTO VILLA

[41] Delyan Z Kalchev and Panayot S Vassilevski. Auxiliary Space Preconditioning of Finite Element
Equations Using a Nonconforming Interior Penalty Reformulation and Static Condensation.
SIAM J. Sci. Comput., 42(3):A1741–A1764, 2020. doi:10.1137/19M1286815.

[42] Tzanio V Kolev, Joseph E Pasciak, and Panayot S Vassilevski. H(curl) auxiliary mesh precon-
ditioning. Numer. Linear Algebr. with Appl., 15(5):455–471, 2008. doi:10.1002/nla.534.

[43] Tzanio V Kolev and Panayot S Vassilevski. Parallel Auxiliary Space AMG for H(curl) Problems.
J. Comput. Math., 27(5):604–623, 2009. doi:10.4208/jcm.2009.27.5.013.

[44] Tzanio V Kolev and Panayot S Vassilevski. Parallel Auxiliary Space AMG Solver for H(div)
Problems. SIAM J. Sci. Comput., 34(6):A3079–A3098, 2012. doi:10.1137/110859361.

[45] Max la Cour Christensen, Panayot S Vassilevski, and Umberto Villa. Nonlinear multigrid
solvers exploiting AMGe coarse spaces with approximation properties. J. Comput. Appl. Math.,
340:691–708, 2018. doi:10.1016/j.cam.2017.10.029.

[46] Max la Cour Christensen, Umberto Villa, Allan P Engsig-Karup, and Panayot S Vassilevski.
Numerical Multilevel Upscaling for Incompressible Flow in Reservoir Simulation: An Element-
Based Algebraic Multigrid (AMGe) Approach. SIAM J. Sci. Comput., 39(1):B102–B137, 2017.
doi:10.1137/140988991.

[47] I V Lashuk and P S Vassilevski. Element agglomeration coarse Raviart-Thomas spaces with
improved approximation properties. Numer. Linear Algebr. with Appl., 19(2):414–426, 2012.
doi:10.1002/nla.1819.

[48] Ilya Lashuk and Panayot S Vassilevski. On some versions of the element agglomeration AMGe
method. Numer. Linear Algebr. with Appl., 15(7):595–620, 2008. doi:10.1002/nla.585.

[49] Ilya V Lashuk and Panayot S Vassilevski. The Construction of the Coarse de Rham Complexes
with Improved Approximation Properties. Comput. Methods Appl. Math., 14(2):257–303, 2014.
doi:10.1515/cmam-2014-0004.

[50] Ping Lin. A Sequential Regularization Method for Time-Dependent Incompressible Navier-Stokes
Equations. SIAM J. Numer. Anal., 34(3):1051–1071, 1997. doi:10.1137/S0036142994270521.

[51] Peter Monk. Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and
Scientific Computation. Clarendon Press, Oxford, 2003.

[52] Duk-Soon Oh, Olof B Widlund, Stefano Zampini, and Clark R Dohrmann. BDDC Algorithms
with deluxe scaling and adaptive selection of primal constraints for Raviart-Thomas vector
fields. Math. Comput., 87(310):659–692, 2018. doi:10.1090/mcom/3254.

[53] Sarah Osborn, Panayot S Vassilevski, and Umberto Villa. A Multilevel, Hierarchical Sampling
Technique for Spatially Correlated Random Fields. SIAM J. Sci. Comput., 39(5):S543–S562,
2017. doi:10.1137/16M1082688.

[54] Sarah Osborn, Patrick Zulian, Thomas Benson, Umberto Villa, Rolf Krause, and Panayot S
Vassilevski. Scalable hierarchical PDE sampler for generating spatially correlated random
fields using nonmatching meshes. Numer. Linear Algebr. with Appl., 25(3):e2146, 2018. doi:
10.1002/nla.2146.

[55] J E Pasciak and J Zhao. Overlapping Schwarz methods in H(curl) on polyhedral domains. J.
Numer. Math., 10(3):221–234, 2002. doi:10.1515/JNMA.2002.221.

[56] Joseph E Pasciak and Panayot S Vassilevski. Exact de Rham Sequences of Spaces Defined on
Macro-Elements in Two and Three Spatial Dimensions. SIAM J. Sci. Comput., 30(5):2427–2446,
2008. doi:10.1137/070698178.

[57] A I Pehlivanov, G F Carey, and P S Vassilevski. Least-squares mixed finite element methods
for non-selfadjoint elliptic problems: I. Error estimates. Numer. Math., 72(4):501–522, 1996.
doi:10.1007/s002110050179.

[58] S Reitzinger and J Schöberl. An algebraic multigrid method for finite element discretizations with
edge elements. Numer. Linear Algebr. with Appl., 9(3):223–238, 2002. doi:10.1002/nla.271.

[59] R N Rieben, D A White, B K Wallin, and J M Solberg. An arbitrary Lagrangian-Eulerian
discretization of MHD on 3D unstructured grids. J. Comput. Phys., 226(1):534–570, 2007.
doi:10.1016/j.jcp.2007.04.031.

[60] Panayot S. Vassilevski. Sparse matrix element topology with application to amg and precondi-
tioning. Numer. Lin. Alg. Appl., 9:429–444, 2002.

[61] Panayot S Vassilevski. Multilevel Block Factorization Preconditioners: Matrix-based Analysis
and Algorithms for Solving Finite Element Equations. Springer, New York, 2008. doi:10.1007/
978-0-387-71564-3.

[62] Panayot S Vassilevski. Coarse Spaces by Algebraic Multigrid: Multigrid Convergence and
Upscaling Error Estimates. Adv. Adapt. Data Anal., 03(01n02):229–249, 2011. doi:10.1142/
S1793536911000830.



PARALLEL AMGE FOR H(curl) AND H(div) USING PARELAG 27

[63] Panayot S Vassilevski and Umberto Villa. A Block-Diagonal Algebraic Multigrid Preconditioner
for the Brinkman Problem. SIAM J. Sci. Comput., 35(5):S3–S17, 2013. doi:10.1137/120882846.

[64] Panayot S. Vassilevski and Junping Wang. Multilevel iterative methods for mixed finite ele-
ment discretizations of elliptic problems. Numer. Math., 63(1):503–520, 1992. doi:10.1007/
BF01385872.

[65] Jinchao Xu, Long Chen, and Ricardo H Nochetto. Optimal multilevel methods for H(grad),
H(curl), and H(div) systems on graded and unstructured grids. In Ronald DeVore and Angela
Kunoth, editors, Multiscale, Nonlinear Adapt. Approx., pages 599–659, Berlin, Heidelberg, 2009.
Springer. doi:10.1007/978-3-642-03413-8_14.

[66] Stefano Zampini. PCBDDC: A Class of Robust Dual-Primal Methods in PETSc. SIAM J. Sci.
Comput., 38(5):S282–S306, 2016. doi:10.1137/15M1025785.

[67] Stefano Zampini and David E Keyes. On the Robustness and Prospects of Adaptive BDDC
Methods for Finite Element Discretizations of Elliptic PDEs with High-Contrast Coefficients. In
Proc. Platf. Adv. Sci. Comput. Conf., New York, 2016. Association for Computing Machinery.
doi:10.1145/2929908.2929919.

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
P.O. Box 808, L-561, Livermore, CA 94551, USA.

Email address: kalchev1@llnl.gov

Department of Mathematics and Statistics, Portland State University, Portland,
OR 97207, USA, and Center for Applied Scientific Computing, Lawrence Livermore
National Laboratory, P.O. Box 808, L-561, Livermore, CA 94551, USA.

Email address: panayot@pdx.edu, vassilevski1@llnl.gov

Electrical & Systems Engineering, Washington University in St. Louis, St. Louis,
MO 63130, USA.

Email address: uvilla@wustl.edu


