Socioeconomic Status in Health Research
One Size Does Not Fit All

Paula A. Braveman, MD, MPH
Catherine Cubbin, PhD
Susan Egerter, PhD
Sekai Chideya, MD, MPH
Kristen S. Marchi, MPH
Marilyn Metzler, RN
Samuel Posner, PhD

The terms “Socioeconomic Status,” “socioeconomic position,” and “social class” (collectively, “SES”) are widely used in health research, reflecting widespread albeit often implicit recognition of the importance of socioeconomic factors for diverse health outcomes. Most health studies that consider SES treat socioeconomic characteristics as potential confounders of relationships between other variables and health. Others explicitly examine relationships between SES and health, seeking to better understand the associations that have been repeatedly observed. The social science and social epidemiology literature consistently treats SES as a multidimensional construct comprising diverse socioeconomic factors (typically, economic resources, power, and/or prestige). Different socioeconomic factors could affect health at different times in the life course, operating at different levels (eg, individual, household, neighborhood), and through different causal pathways (eg, by determining exposures, vulnerability, or even direct physiological effects). Socioeconomic factors can interact with other social characteristics, such as racial/ethnic group and sex, to produce different health effects across groups. Despite expert consensus that SES is complex and multifactorial, most health studies that consider SES use a single socioeconomic variable measured at a single period and level. Often, very few categories are used (eg, poor/nonpoor, less than high school/high school graduation or more schooling), which could obscure important social gradients in health that apply across the entire socioeconomic spectrum. Occupation is frequently used as a measure of SES in Europe, while income or education is more commonly used in the United States. Regardless of the measure(s) used, most studies include SES variables without justifying why a given measure was selected over others, without explaining its meaning for a given analysis, and without discussing how...
unmeasured socioeconomic differences might have affected findings. This article critically examines several widespread standard practices in SES measurement, discussing key concepts and providing examples to illustrate problems with those practices. The examples were chosen to illustrate SES measurement issues, not to gain new knowledge about the role of socioeconomic or other social factors in the selected health indicators. Our goals were to increase awareness—not only among health researchers but also among policy makers and practitioners who use health research findings—about inherent problems with standard methods of measuring and interpreting socioeconomic characteristics in health research, as well as to encourage improved approaches. While excellent critiques have been available,10,23–28,33,34 the persistence of problematic approaches to SES measurement indicates that these documents have not yet influenced most researchers’ practices. In many ways, this article parallels a recent JAMA Editorial critiquing the ways in which race/ethnicity is commonly measured in health research35 and suggesting improved approaches based on more sound conceptualization.

Methods
To illustrate key points, we selected examples from existing literature and from new analyses of several national and statewide surveys, using the most recent data available that were suitable for the desired analyses. The new analyses were planned a priori to examine a range of (1) widely used, high-quality, population-based data sources that represent a range of data collection methods (eg, household vs telephone survey); (2) indicators of different aspects of health (status, behaviors, care) in (3) different life stages; and (4) different commonly used and reasonable measures of income and education. Data sources, samples, and key SES and health-related variables for the new analyses are summarized in **Table 1**. We used 5 nationally or statewide-representative data sources with well-documented strengths and limitations: the multistate Behavioral Risk Factor Surveillance System (BRFSS), 200436; the National Health Interview Survey (NHIS) linked with the National Death Index, 1989-1994, with mortality follow-up through 1997 (mortality follow-up is not currently available for later years of the NHIS)37; the Third National Health and Nutrition Examination Survey (NHANES III), 1988-1994 (both income and education were measured

Table 1. Summary of Data Sources, Samples, Measures of Socioeconomic Status (SES), and Dependent Variables Used in New Analyses of Health Surveys

<table>
<thead>
<tr>
<th>Data Source</th>
<th>Age Group, y</th>
<th>Racial/Ethnic Groups</th>
<th>Measures of SES*</th>
<th>Dependent Variables (Health-Related Indicators)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavioral Risk Factor Surveillance System, 200443</td>
<td>18-74 (n = 255,896)</td>
<td>Black (non-Hispanic), Hispanic (non-Hispanic), White (non-Hispanic)</td>
<td>Poverty level, Income (categories), Educational level</td>
<td>Cigarette smoking, Obesity, Sedentary</td>
</tr>
<tr>
<td>National Health Interview Survey, 1989-1994 (mortality follow-up through 1997)77</td>
<td>18-64 (n = 380,552)</td>
<td>Black (non-Hispanic), Mexican American (non-Hispanic), White (non-Hispanic)</td>
<td>Poverty level, Income (continuous), Income/needs (continuous), Income/needs (quartiles), Educational level, Education, y</td>
<td>Fair or poor health status, All-cause mortality, Heart disease mortality, Homicide, Motor vehicle fatalities</td>
</tr>
<tr>
<td>Third National Health and Nutrition Examination Survey, 1988-199493</td>
<td>1-5 (n = 5,493), <17 (n = 12,388), 25-64 (n = 10,029)</td>
<td>Black (non-Hispanic), Mexican American (non-Hispanic), White (non-Hispanic)</td>
<td>Poverty level, Income (continuous), Educational level</td>
<td>Elevated lead levels (ages 1-5 y), Asthma (ages <17 y), Cigarette smoking (ages 25-64 y), Obesity (ages 25-64 y), Hypertension (ages 25-64 y), Diabetes (ages 25-64 y)</td>
</tr>
<tr>
<td>National Longitudinal Study of Adolescent Health, 1994-199593</td>
<td>11-21 (n = 14,282)</td>
<td>Black (non-Hispanic), Cuban, Mexican American, Puerto Rican, White (non-Hispanic)</td>
<td>Poverty level, Income (continuous), Income/needs (continuous), Income/needs (quartiles), Educational level</td>
<td>Cigarette smoking, Initiation of sexual intercourse, Violent behavior, Binge drinking, Marijuana use</td>
</tr>
<tr>
<td>California Maternal and Infant Health Assessment, 1999-200443</td>
<td>>24 (n = 13,952)</td>
<td>Asian/Pacific Islander (immigrant or US-born), Black, Latina (immigrant or US-born)</td>
<td>Poverty level, Income (continuous), Income/needs (continuous), Income/needs (quartiles), Educational level, Education, y</td>
<td>Unintended pregnancy, Delayed or no prenatal care, Low birth weight, Never breastfed</td>
</tr>
</tbody>
</table>

*Poverty level indicates annual income estimated in categories defined by 100% increments of the federal poverty level according to family or household size (0%-100%, 101%-200%, 201%-300%, 301%-400%, >400%, unknown). Income (categories) indicates annual income in categories corresponding to ranges in dollars; income (continuous), annual income in continuous dollars estimated as the midpoint of a given income range; income/needs (continuous), annual income in continuous dollars divided by family size; income/needs (quartiles), annual income in continuous dollars grouped into empirical quartiles; and income/needs (quartiles), annual income in continuous dollars divided by family size, grouped into empirical quartiles. Educational level indicates completed education in levels according to earned credentials (<9 years, some high school, high school graduate/General Equivalency Diploma, some college, college graduate or more); for California Maternal and Infant Health Assessment, <9 years and some high school are combined; the National Longitudinal Study of Adolescent Health also includes a category for unknown education. Education, y indicates completed education in years.
more adequately in NHANES III than in the most recent NHANES data,\(^6^9\), the National Longitudinal Study of Adolescent Health (Add Health), 1994-1995 (the baseline survey, when parents or guardians of the adolescents responded to questions on income and education),\(^6^9\), and the Maternal and Infant Health Assessment (MIHA), 1999-2004,\(^6^0\) a statewide survey of postpartum women in California supported by the California Department of Health Services Maternal, Child and Adolescent Health Branch.\(^6^1\) Using SAS software,\(^6^5\) we examined correlations among multiple individual- or household-level measures of current education and income. To provide additional illustrative examples, we used SUDAAN software\(^6^6\) and the specified data sources and samples to construct a series of weighted unadjusted and multivariate logistic regression models for each of 23 health-related indicators (listed as dependent variables in Table 1, counting obesity and smoking as separate indicators in different data sources or samples). These models examined how observed associations—expressed as odds ratios with 95% confidence intervals—between racial/ethnic groups and the health-related indicators varied by the income and/or education measures (see Table 1 footnotes) used as covariates to reflect SES; models also included age and sex (or parity, in MIHA), as well as family structure (in Add Health). Reference groups were those with the highest income or educational attainment. Log likelihood ratio tests were used to assess goodness of fit.\(^6^7\) Further details about methods are included in a technical appendix available from the authors on request or at http://www.ucsf.edu/csdx.

Race/ethnicity, regarded as a social construct, was assessed in the study primarily to examine whether observed associations between racial/ethnic groups and health-related indicators varied by the income measures, education measures, or both used as covariates to reflect SES; we also examined how a range of socioeconomic factors varied by racial/ethnic group. While racial/ethnic groups were categorized differently depending on the data source (see Table 1 or text below), all categories were based on self-reported information about respondents’ primary racial/ethnic identification. The MIHA included Latino/Hispanic as a separate racial/ethnic category; the BRFSS, NHIS, NHANES III, and Add Health surveys included separate questions about race and Hispanic ethnicity, which we used to create mutually exclusive racial/ethnic groups.

Critique of SES Measurement Approaches in Health Research

Education and Income: Not Interchangeable. Socioeconomic status is often implicitly or explicitly equated with income, especially in the United States. Despite wide recognition of its importance for health, income information is considered to be sensitive and is not measured in many studies. Information about education (typically measured as years completed or credentials of formal schooling) is more easily obtained and is frequently treated as a proxy for income (or for SES overall). When both education and income are available, researchers may hesitate to include both in analytic models because of concerns about colinearity. Evidence from the literature and our new analyses indicates, however, that while standard measures of education and income are correlated, these correlations are generally not strong enough to justify using education as a proxy for income (or vice versa). Earnings can vary at similar educational levels, particularly across different social (eg, racial/ethnic, sex, age) groups.

For example, Table 2 shows, based on NHIS data, that black and Mexican American adults at every educational level had significantly lower mean incomes compared with white adults of similar educational attainment (eg, 33% and 18% lower for those with 12 years of schooling). This difference may reflect not only unequal employment opportunities and rewards but variations in educational quality.\(^6^8\) While measuring credentials is generally preferred to years of schooling for the purposes of reflecting SES,\(^2^7,2^8,6^9,6^9\) neither captures potentially dramatic differences across schools in prestige or resources, which may contribute to differences in future earnings. Table 3 displays correlations between education and income (see Table 3 footnotes) overall and within racial/ethnic groups for each data source or sample. Consistent with other studies,\(^2^3,3^1,7^0,7^1\) income-education correlations—most less than 0.50—were not strong enough to justify using income and education as proxies for each other.

Table 2. Mean Family Income by Educational Level and Racial/Ethnic Group Among Adults Aged 18-64 Years—National Health Interview Survey, 1989-1994 (n = 380,552)

<table>
<thead>
<tr>
<th>Educational Level, y</th>
<th>Black (95% Confidence Interval), $</th>
<th>Mexican American (95% Confidence Interval), $</th>
<th>White (95% Confidence Interval), $</th>
<th>Overall (95% Confidence Interval), $</th>
</tr>
</thead>
<tbody>
<tr>
<td><9</td>
<td>15,503 (14,851-16,154)</td>
<td>19,104 (17,549-20,659)</td>
<td>22,707 (21,935-23,479)</td>
<td>20,551 (19,868-21,234)</td>
</tr>
<tr>
<td>9-11</td>
<td>17,743 (17,051-18,434)</td>
<td>22,377 (20,807-23,948)</td>
<td>28,573 (28,062-29,083)</td>
<td>25,945 (25,486-26,403)</td>
</tr>
<tr>
<td>12</td>
<td>25,337 (24,529-26,144)</td>
<td>30,945 (29,791-32,098)</td>
<td>37,853 (37,400-38,305)</td>
<td>36,022 (35,613-36,432)</td>
</tr>
<tr>
<td>≥16</td>
<td>46,815 (45,535-48,095)</td>
<td>48,055 (46,137-49,973)</td>
<td>55,277 (54,725-55,829)</td>
<td>54,606 (54,064-55,149)</td>
</tr>
<tr>
<td>Overall</td>
<td>27,937 (27,123-28,752)</td>
<td>27,927 (26,498-29,356)</td>
<td>42,113 (41,626-42,600)</td>
<td>39,716 (39,274-40,159)</td>
</tr>
</tbody>
</table>
Table 3. Spearman Correlation Coefficients Between Poverty Level and Educational Level Overall and by Racial/Ethnic Group, by Data Source and Age Group

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>0.45</td>
<td>0.42</td>
<td>0.44</td>
<td>0.42</td>
<td>0.42</td>
<td>0.45</td>
<td>0.59</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexican American</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
<td>0.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puerto Rican</td>
<td>0.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US-born</td>
<td>0.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latina</td>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US-born</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>0.48</td>
<td>0.41</td>
<td>0.54</td>
<td>0.50</td>
<td>0.40</td>
<td>0.44</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Abbreviations: Add Health, National Longitudinal Study of Adolescent Health; BRFSS, Behavioral Risk Factor Surveillance System; MIHA, California Maternal and Infant Health Assessment; NHANES III, Third National Health and Nutrition Examination Survey; NHIS, National Health Interview Survey.

Table 4. Odds Ratios for Racial/Ethnic Disparities in Fair or Poor Health Among Adults Aged 18-64 Years—National Health Interview Survey, 1989-1994 (n = 380,552)

<table>
<thead>
<tr>
<th>SES Measure in Modela</th>
<th>Black Non-Hispanic</th>
<th>Mexican American</th>
<th>OR (95% CI)†‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (baseline)</td>
<td>2.47 (2.30-2.64)</td>
<td>2.16 (2.01-2.32)</td>
<td></td>
</tr>
<tr>
<td>Poverty level§</td>
<td>1.65 (1.56-1.76)</td>
<td>1.30 (1.22-1.39)</td>
<td></td>
</tr>
<tr>
<td>Income, per $1000§</td>
<td>1.67 (1.57-1.78)</td>
<td>1.44 (1.32-1.56)</td>
<td></td>
</tr>
<tr>
<td>Educational level[]</td>
<td>1.96 (1.85-2.08)</td>
<td>1.06 (0.99-1.14)</td>
<td></td>
</tr>
<tr>
<td>Education, per 1 y</td>
<td>2.02 (1.91-2.14)</td>
<td>0.89 (0.82-0.97)</td>
<td></td>
</tr>
<tr>
<td>Poverty level and educational level</td>
<td>1.53 (1.45-1.61)</td>
<td>0.86 (0.81-0.93)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; OR, odds ratio; SES, socioeconomic status.

To further illustrate practical implications of treating education as an income proxy, we examined how conclusions regarding racial/ethnic disparities in health might vary depending on whether income or education was used to measure SES. Table 4 displays results on racial/ethnic differences in self-rated health among adults aged 18 to 64 years from 6 multivariate models using NHIS data. The models differed by whether and how income and education were included as covariates (see Table 4 footnotes); all models included race/ethnicity, age, and sex. When income (measured continuously or grouped by poverty level) was used to “adjust for SES,” Mexican Americans appeared to be at significantly increased risk of fair or poor health compared with non-Hispanic whites; however, risks appeared similar when educational level alone was included and significantly lower when either years of education or both poverty and educational levels were included. Comparing blacks and whites, higher risks were seen for blacks regardless of the income or education measure used; however, the relevant odds ratios were significantly smaller after adjustment for income or poverty level. Similarly, TABLE 5 reveals disparities in receiving delayed (after the first trimester) or no prenatal care among women who gave birth in California during 1999-2004; all models used MIHA data and included race/ethnicity, age, and parity. In separate comparisons of black and immigrant Latina women with white women, significant disparities in delayed or no prenatal care were seen when adjusting for either education measure alone but not when adjusting for either income measure alone or together with education. Although differences often were not statistically significant, one would have reached different conclusions about the significance, magnitude, or direction of racial/ethnic disparities in 10 of the 23 health indicators we examined, depending on whether (or less frequently, how) income and education were measured. For 20 of the 23 health indicators, model fit was significantly better.
when both income and education were included, indicating that both factors should be considered (data available from authors on request or at http://www.ucsf.edu/csdl).

Both income and education can influence the etiology of many health outcomes, in part through pathways involving material resources. Education also can reflect a range of noneconomic social characteristics (eg, general and health-related knowledge, literacy, and problem-solving skills; prestige; influence over others and one’s own life) with important health effects; thus, for many health outcomes, education should be considered in addition to—in instead of—income, accumulated wealth, and other more directly economic factors.

Income: Not a Proxy for Wealth. Important links between economic resources and health, operating through diverse causal pathways, are widely recognized. While income is the most commonly used measure of economic resources in affluent countries, total accumulated economic resources or “wealth” could be at least as important for health; for example, wealth can buffer the effects of temporarily low income due to unemployment or illness and can reflect power or influence over others. Furthermore, wealth can vary dramatically across different social groups with similar incomes. For example, Table 6, based on 2000 data from the Census Bureau, shows that, in the lowest income quintile, households headed by whites had on average more than 40 times as much wealth as those headed by blacks, and that, in higher income quintiles, whites had approximately 3 to 9 times the wealth of blacks; these differences were statistically significant (see Table 6 footnotes).

With notable exceptions, few health studies in affluent countries have measured wealth. Like income, wealth can be a sensitive topic, and standard methods of calculating net worth can be laborious. Some studies have observed wealth effects on health using simpler measures such as home or car ownership or a single question on “liquid assets,” even after controlling for income, another socioeconomic measure, or both. In summary, there are strong conceptual and empirical grounds for measuring wealth in health studies and for concluding that income is not an adequate measure of wealth.

Inadequacy of Standard US Occupational Categories. Occupational categories based on prestige, skills, social influence, and/or power have been the primary basis for socioeconomic classification in western European countries. Studies have repeatedly found strong relationships between occupational status using such classifications (eg, manual vs nonmanual labor, or graded hierarchies according to prestige or skills) and diverse health indicators, even after controlling for car ownership or income and education. Stepwise gradients in mortality and cardiovascular outcomes have been observed in the British civil service hierarchy, with individuals in each occupational grade experiencing worse outcomes than those in the grade immediately above, even after adjusting for health-related behaviors; no group was poor, and financial access to medical care was unlikely to account for the differences. One explanation is variation in the psychosocial characteristics of one’s occupation, including control over one’s work.

Health studies in the United States rarely measure occupation, however. Occupational information is included in vital statistics and some national health surveys, but these data were not intended—and do not appear to be meaningful—as SES measures, because the categories include workers with diverse prestige, skills, power, and/or earnings. For example, the 2000 Standard Occupational Classification System classifies chief executive officers, town clerks, and tenant farmers under "Man-

Table 5. Odds Ratios for Racial/Ethnic Disparities in Delayed or No Prenatal Care Among Childbearing Women Aged 25 Years and Older—California Maternal and Infant Health Assessment, 1999-2004 (n = 13 952)

<table>
<thead>
<tr>
<th>SES Measure in Model*</th>
<th>Black OR (95% CI)†</th>
<th>Latina Immigrant OR (95% CI)†</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (baseline)</td>
<td>1.86 (1.53-2.26)</td>
<td>2.21 (1.90-2.57)</td>
</tr>
<tr>
<td>Poverty level‡</td>
<td>1.16 (0.95-1.43)</td>
<td>1.08 (0.91-1.28)</td>
</tr>
<tr>
<td>Income, per $1000‡</td>
<td>1.12 (0.91-1.40)</td>
<td>1.05 (0.88-1.26)</td>
</tr>
<tr>
<td>Educational level§</td>
<td>1.57 (1.29-1.92)</td>
<td>1.47 (1.22-1.76)</td>
</tr>
<tr>
<td>Educational level, per 1 y</td>
<td>1.72 (1.41-2.10)</td>
<td>1.37 (1.12-1.67)</td>
</tr>
<tr>
<td>Poverty level and educational level</td>
<td>1.13 (0.91-1.39)</td>
<td>0.98 (0.82-1.18)</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; OR, odds ratio; SES, socioeconomic status.
*All models included race/ethnicity, age, and parity.
†White is the reference group.
‡See Table 4 footnotes for definition.
§Completed education in levels according to earned credentials (<9 years/some high school, high school graduate/General Equivalency Diploma, some college, college graduate or more).

Table 6. Median Net Worth in Dollars (Excluding Home Equity) by Quintile of Monthly Household Income and Householder’s Racial/Ethnic Group, 2000

<table>
<thead>
<tr>
<th>Quintile</th>
<th>Black‡</th>
<th>Hispanic‡</th>
<th>White Non-Hispanic‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowest</td>
<td>57</td>
<td>500</td>
<td>24 000</td>
</tr>
<tr>
<td>Second</td>
<td>5275</td>
<td>5670</td>
<td>48 500</td>
</tr>
<tr>
<td>Third</td>
<td>11 500</td>
<td>11 200</td>
<td>59 500</td>
</tr>
<tr>
<td>Fourth</td>
<td>32 600</td>
<td>36 225</td>
<td>92 842</td>
</tr>
<tr>
<td>Highest</td>
<td>65 141</td>
<td>73 032</td>
<td>208 023</td>
</tr>
</tbody>
</table>

*From US Census Bureau Survey of Income and Program Participation. Standard errors are not reported by the source; however, both the comparisons of blacks with whites and of Hispanics with whites are stated to be significantly different.
†Report does not indicate whether blacks are Non-Hispanic.
‡Persons of Hispanic origin may be of any race.

©2005 American Medical Association. All rights reserved.
agreement” and head chefs, waitresses, and dishwashers under “Food Preparation and Serving Related.” Several authors25-28,53 have provided detailed critiques of occupational classifications. Some researchers have grouped the standard occupational classifications into manual and nonmanual work categories and found strong associations with health outcomes.30 While this may be worthwhile when better alternatives are unavailable, more meaningful occupational classifications (eg, such as questions from Karasek92,93 measuring control and demands at work) are needed to capture information about important differences in occupation-related prestige or power that could affect health. Occupational measures, however, present challenges for classifying persons outside the paid labor force (thus disproportionately affecting women) or the chronically unemployed.

Importance of Past Socioeconomic Experiences. Childhood SES may influence adult health independently of adult SES.6,13,31-33,79,93-99 Acknowledging that the relative importance of SES early in life varies with health outcomes, Smith and Ben-Shlomo13 concluded that “studies with data on socioeconomic circumstances at only one stage of life are inadequate for fully elucidating the contribution of socioeconomic factors to health and mortality risk.” Past socioeconomic factors could act independently or modify the effects of current factors on health.13,39,100 Changes in SES over time, including dramatic loss of income, can affect later health,90,101,102 and poverty can have cumulative health effects.99,103,104 Different socioeconomic factors could be more or less important at different stages of life.83

Standard practice for measuring SES in most health studies, however, is to include only measures of current or recent socioeconomic characteristics; apart from some occupational health studies, socioeconomic experiences during earlier life stages are rarely measured. Socioeconomic status in childhood generally is related to SES in adulthood,105-107 but important SES characteristics earlier in life (eg, parents’ educational attainment) may not be reflected in measures of current SES, particularly for some population groups. For example, when their own parents’ education was examined among women older than 24 years who gave birth in California during 2003-2004, only 50% of college-graduate women had been raised by a college-graduate parent. Lack of correspondence between educational attainment of women and their parents was seen for women at all educational levels (data available on request or at http://www.ucsf.edu/csdh). Given the potentially important role that past socioeconomic experiences may play in health outcomes, practical measures of socioeconomic experiences earlier in life—eg, the highest educational attainment of either parent/guardian when an adult respondent was a child—should be developed and tested in diverse populations.

Importance of Neighborhood Socioeconomic Conditions. Accumulating evidence suggests that an individual’s health can be influenced by the socioeconomic characteristics of the neighborhood in which she or he lives, above and beyond her or his own individual-level SES.34-37 Socioeconomic characteristics of neighborhoods could affect health through features of the physical (“built”), social, or service environments.114 People with similar individual- or household-level socioeconomic characteristics can live in very different local environments. For example, as seen in FIGURE 1, Add Health data show that poor black and Puerto Rican adolescents (in families with incomes at or below the poverty line) lived in neighborhoods with higher poverty concentrations than their poor white counterparts; mean differences were statistically significant and similar patterns of racial/ethnic differences in neighborhood conditions were apparent among higher-income adolescents (data available on request or at http://www.ucsf.edu/csdh) and among nationally representative samples of adults115 and women of reproductive age.116

Despite increasing recognition that both individual- and neighborhood-level SES can influence health, few health studies measure neighborhood features along with—rather than as proxies for—individual-level SES measures. In practice, however, many re-
researchers could consider characteristics of both individuals and their neighborhoods, despite theoretical and methodological challenges.117-119 By linking residential addresses with census geographic codes such as census tracts, census variables (eg, percentages of poor households or of unemployed adults) can be used to describe neighborhoods; similarly, geographic coordinates (longitude/latitude) can be linked with various data sources to describe physical environments in ways that are relevant for health research.

Conclusions and Recommendations

Based on the empirical evidence from new analyses and from the literature, we have reached 5 general conclusions, with corresponding recommendations for improving the measurement and interpretation of SES in health studies.

Different socioeconomic measures cannot be assumed to be interchangeable. The generally modest correlations between income and education indicate that measures of these 2 socioeconomic factors are not interchangeable; this is further supported by the examples showing that associations between racial/ethnic groups and health indicators can depend on which socioeconomic measures are used as covariates. Evidence of racial/ethnic differences in income at a given level of education, in wealth at a given level of income, in past SES at a given level of education, in wealth at a given level of income, or in ages of poor households or of unemployed adults can be used to describe neighborhoods; similarly, geographic coordinates (longitude/latitude) can be linked with various data sources to describe physical environments in ways that are relevant for health research.

Conclusions and Recommendations

Based on the empirical evidence from new analyses and from the literature, we have reached 5 general conclusions, with corresponding recommendations for improving the measurement and interpretation of SES in health studies.

Different socioeconomic measures cannot be assumed to be interchangeable. The generally modest correlations between income and education indicate that measures of these 2 socioeconomic factors are not interchangeable; this is further supported by the examples showing that associations between racial/ethnic groups and health indicators can depend on which socioeconomic measures are used as covariates. Evidence of racial/ethnic differences in income at a given level of education, in wealth at a given level of income, in past SES at a given level of education, in wealth at a given level of income, or in ages of poor households or of unemployed adults can be used to describe neighborhoods; similarly, geographic coordinates (longitude/latitude) can be linked with various data sources to describe physical environments in ways that are relevant for health research.

Conclusions and Recommendations

Based on the empirical evidence from new analyses and from the literature, we have reached 5 general conclusions, with corresponding recommendations for improving the measurement and interpretation of SES in health studies.

Different socioeconomic measures cannot be assumed to be interchangeable. The generally modest correlations between income and education indicate that measures of these 2 socioeconomic factors are not interchangeable; this is further supported by the examples showing that associations between racial/ethnic groups and health indicators can depend on which socioeconomic measures are used as covariates. Evidence of racial/ethnic differences in income at a given level of education, in wealth at a given level of income, in past SES at a given level of education, in wealth at a given level of income, or in ages of poor households or of unemployed adults can be used to describe neighborhoods; similarly, geographic coordinates (longitude/latitude) can be linked with various data sources to describe physical environments in ways that are relevant for health research.

Conclusions and Recommendations

Based on the empirical evidence from new analyses and from the literature, we have reached 5 general conclusions, with corresponding recommendations for improving the measurement and interpretation of SES in health studies.

Different socioeconomic measures cannot be assumed to be interchangeable. The generally modest correlations between income and education indicate that measures of these 2 socioeconomic factors are not interchangeable; this is further supported by the examples showing that associations between racial/ethnic groups and health indicators can depend on which socioeconomic measures are used as covariates. Evidence of racial/ethnic differences in income at a given level of education, in wealth at a given level of income, in past SES at a given level of education, in wealth at a given level of income, or in ages of poor households or of unemployed adults can be used to describe neighborhoods; similarly, geographic coordinates (longitude/latitude) can be linked with various data sources to describe physical environments in ways that are relevant for health research.

Conclusions and Recommendations

Based on the empirical evidence from new analyses and from the literature, we have reached 5 general conclusions, with corresponding recommendations for improving the measurement and interpretation of SES in health studies.

Different socioeconomic measures cannot be assumed to be interchangeable. The generally modest correlations between income and education indicate that measures of these 2 socioeconomic factors are not interchangeable; this is further supported by the examples showing that associations between racial/ethnic groups and health indicators can depend on which socioeconomic measures are used as covariates. Evidence of racial/ethnic differences in income at a given level of education, in wealth at a given level of income, in past SES at a given level of education, in wealth at a given level of income, or in ages of poor households or of unemployed adults can be used to describe neighborhoods; similarly, geographic coordinates (longitude/latitude) can be linked with various data sources to describe physical environments in ways that are relevant for health research.

Conclusions and Recommendations

Based on the empirical evidence from new analyses and from the literature, we have reached 5 general conclusions, with corresponding recommendations for improving the measurement and interpretation of SES in health studies.

Different socioeconomic measures cannot be assumed to be interchangeable. The generally modest correlations between income and education indicate that measures of these 2 socioeconomic factors are not interchangeable; this is further supported by the examples showing that associations between racial/ethnic groups and health indicators can depend on which socioeconomic measures are used as covariates. Evidence of racial/ethnic differences in income at a given level of education, in wealth at a given level of income, in past SES at a given level of education, in wealth at a given level of income, or in ages of poor households or of unemployed adults can be used to describe neighborhoods; similarly, geographic coordinates (longitude/latitude) can be linked with various data sources to describe physical environments in ways that are relevant for health research.

Conclusions and Recommendations

Based on the empirical evidence from new analyses and from the literature, we have reached 5 general conclusions, with corresponding recommendations for improving the measurement and interpretation of SES in health studies.

Different socioeconomic measures cannot be assumed to be interchangeable. The generally modest correlations between income and education indicate that measures of these 2 socioeconomic factors are not interchangeable; this is further supported by the examples showing that associations between racial/ethnic groups and health indicators can depend on which socioeconomic measures are used as covariates. Evidence of racial/ethnic differences in income at a given level of education, in wealth at a given level of income, in past SES at a given level of education, in wealth at a given level of income, or in ages of poor households or of unemployed adults can be used to describe neighborhoods; similarly, geographic coordinates (longitude/latitude) can be linked with various data sources to describe physical environments in ways that are relevant for health research.

Conclusions and Recommendations

Based on the empirical evidence from new analyses and from the literature, we have reached 5 general conclusions, with corresponding recommendations for improving the measurement and interpretation of SES in health studies.

Different socioeconomic measures cannot be assumed to be interchangeable. The generally modest correlations between income and education indicate that measures of these 2 socioeconomic factors are not interchangeable; this is further supported by the examples showing that associations between racial/ethnic groups and health indicators can depend on which socioeconomic measures are used as covariates. Evidence of racial/ethnic differences in income at a given level of education, in wealth at a given level of income, in past SES at a given level of education, in wealth at a given level of income, or in ages of poor households or of unemployed adults can be used to describe neighborhoods; similarly, geographic coordinates (longitude/latitude) can be linked with various data sources to describe physical environments in ways that are relevant for health research.

Conclusions and Recommendations

Based on the empirical evidence from new analyses and from the literature, we have reached 5 general conclusions, with corresponding recommendations for improving the measurement and interpretation of SES in health studies.

Different socioeconomic measures cannot be assumed to be interchangeable. The generally modest correlations between income and education indicate that measures of these 2 socioeconomic factors are not interchangeable; this is further supported by the examples showing that associations between racial/ethnic groups and health indicators can depend on which socioeconomic measures are used as covariates. Evidence of racial/ethnic differences in income at a given level of education, in wealth at a given level of income, in past SES at a given level of education, in wealth at a given level of income, or in ages of poor households or of unemployed adults can be used to describe neighborhoods; similarly, geographic coordinates (longitude/latitude) can be linked with various data sources to describe physical environments in ways that are relevant for health research.

Conclusions and Recommendations

Based on the empirical evidence from new analyses and from the literature, we have reached 5 general conclusions, with corresponding recommendations for improving the measurement and interpretation of SES in health studies.

Different socioeconomic measures cannot be assumed to be interchangeable. The generally modest correlations between income and education indicate that measures of these 2 socioeconomic factors are not interchangeable; this is further supported by the examples showing that associations between racial/ethnic groups and health indicators can depend on which socioeconomic measures are used as covariates. Evidence of racial/ethnic differences in income at a given level of education, in wealth at a given level of income, in past SES at a given level of education, in wealth at a given level of income, or in ages of poor households or of unemployed adults can be used to describe neighborhoods; similarly, geographic coordinates (longitude/latitude) can be linked with various data sources to describe physical environments in ways that are relevant for health research.
nomic resources, education, occupa-
tion, socioeconomic factors earlier in life, and neighborhood socioeconomic conditions at any life stage could plausibly be relevant to the particular health outcome and population of interest. They should assess the feasibility of adequately measuring each potentially relevant factor using available data; when a relevant factor cannot be measured, the implications of its exclusion should be considered thought-
fully and acknowledged. If a theoretically plausible argument or evidence from previous studies indicates that a particular socioeconomic factor is un-
likely to be relevant for the given outcome or population of interest, it may not be necessary to include that factor. However, the approach we recom-
 mend would shift the burden to the re-
searcher to justify why a study does not include measures of economic re-
sources, education, occupation, past SES, and neighborhood socioeconomic conditions and to discuss fully the implications of unmeasured fac-
tors when stating conclusions.

Final Comments
We have presented conceptual argu-
ments and empirical examples from di-
verse data sources, populations, and health-related indicators to illustrate several major and pervasive problems with the standard ways in which SES is measured in health research. The ex-
amples presented here highlight the poten-
tial consequences of inadequately measuring socioeconomic factors, par-
ticularly in studies of racial/ethnic dis-
pairities; similar caveats apply to stud-
ies of other social disparities, eg, by age, sex, or geographic residence. Our aim has been to provide convincing evi-
dence for a wide audience of health re-
searchers and users of health research findings. While previous authors have written about many of these issues, the messages apparently have not reached most clinical and public health re-
searchers and policy makers. In par-
ticular, the evidence presented here, re-
forced by the discussion in a recent JAMA Editorial on measuring racial/
ethnic group, calls for a careful reas-
essment of conclusions about the etio-
logic basis of racial/ethnic differences in health based on studies with lim-
ited socioeconomic information.

These findings highlight the chal-
 lenges in capturing the multidimen-
sional nature of SES and the limita-
tions of standard measures. Should we despair of measuring SES adequately? We think not. Better measures are needed, along with work to develop and validate measures and measurement ap-
proaches that are as comparable across studies and populations as possible. However, health research could be im-
proved significantly with a more con-
ceptually and empirically sound ap-
proach to measurement of SES. Building on our own and others’ work, we call for a fundamentally different concep-
tual approach to measuring SES in health studies. This approach is out-
come- and social group–specific and rests on considering explanatory path-
ways and mechanisms, measuring as much relevant socioeconomic infor-
mation as possible, claiming to mea-
sure only what was measured, and sys-
tematically considering how important unmeasured socioeconomic factors may affect conclusions.

Author Contributions: Drs Braveman, Cubbin, and Egerter and Ms Marchi and Drs Marchi, Metzler, and Posner contributed equally to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Braveman, Cubbin, Egerter, Metzler, Posner. Acquisition of data: Braveman, Cubbin, Chideya, Marchi. Analysis and interpretation of data: Braveman, Cubbin, Egerter, Chideya, Marchi, Metzler, Posner. Drafting of the manuscript: Braveman, Cubbin, Egerter. Critical revision of the manuscript for important in-

Funding/Support: The research for this article was sup-
ported by the Division of Reproductive Health, Co-
ordinating Center for Health Promotion, Centers for Disease Control and Prevention (CDC-ATPM Coop-
 erative Agreement TS-0842). One of the data sources (Maternal and Infant Health Assessment, MIHA) is a collaborative effort of the authors (P.A.B., S.E., K.S.M.) with the California Department of Health Services Ma-
ternal and Child Health Branch (MCHB), supported by CDC-ATPM (see Acknowledgment). Dr Chideya’s par-
ticipation in this effort was funded by the Depart-
ment of Family and Community Medicine, Univer-
sity of California, San Francisco, which supported her as a Kellogg Health Disparities Scholar.

Role of the Sponsors: None of the funding sources for this study had any role in the design or conduct of the study; the collection, management, analysis, or inter-
pretation of the data; or the preparation of the manuscript. Anonymous reviewers at the Centers for Disease Control and Prevention reviewed and ap-
proved the technical quality of the manuscript. The role of the California Department of Health Services in the collection of the data from the MIHA is noted above.

Acknowledgment: We acknowledge MCAH research-
ers Shabbir Ahmad, DVM, MPH, Eugene Tashkahi,
PhD, and Moreen Libet, PhD, for their contributions to the design and conduct of MIHA. We thank Nicole Wojtal and Pinal Shah, Department of Family and Com-
munity Medicine, University of California, San Fran-
cisco (UCSF), for their assistance with research and pre-
paring the manuscript, and Roberto Vargas, MD, MPH, Department of Medicine, University of California, Los Angeles, Craig Pollack, MD, Department of Medi-
cine, UCSF, and Thomas Bodenheimer, MD, Depart-
ment of Family and Community Medicine, UCSF, for helpful comments on drafts.

REFERENCES
1. Isaacs SL, Schroeder SA. Class—the ignored de-
2. Marmot MG, Rose G, Shipley M, Hamilton PJ. Em-
ployment grade and coronary heart disease in British civil servants. J Epidemiol Community Health. 1978; 32:244-249.
3. Kaplan NE, Boyce WT, Chesney MA, Folkman S, Sy
4. Kaplan GA. People and places: contrasting per-
5. Backlund E, Sorelie PD, Johnson NJ. The shape of the relationship between income and mortality in the United States: evidence from the National Longitu-
6. Lynch JW, Kaplan GA, Salonen JT. Why do people behave poorly? variations in adult health beh-
7. Macintyre S, Ellaway A, Der G, Ford C, Hunt K. Do housing tenure and car access predict health be-
cause they are simply markers of income or self es-
9. Marmot M, Ryff CD, Bumpass LL, Shipley M, Marks NF. Social inequalities in health: next questions and con-
13. Smith GD, Ben-Shlomo Y. Geographical and so-
cial class differentials in stroke mortality—the influ-
ence of early-life factors: comment on papers by Ma-

50. Brenner MH. Health, productivity, and the eco-
SOCIOECONOMIC STATUS IN HEALTH RESEARCH

Disease: a comparison of occupational classifications.

BMJ Community Health

causes of socioeconomic differentials in mortality: fur-

pends on how you measure it.

80.

DP. Childhood socioeconomic status and host resis-

ership of Households: 1998 and 2000

78.

Productivity

1997;350:516.

Von dem Knesebeck O, Luschen G, Cockerham WC, Segrist J. Socioeco-

81.

82.

83.

84.

85.

86.

Diderichsen F, Hallqvist J. Trends in occupa-

87.

88.

Macintyre S. The patterning of health by social position in contemporary Britain: directions for sociolo-

89.

Parnuk ER. Social-class inequality in infant mor-

90.

91.

Theorell T, Tsutsumi A, Hallqvist J. Decision lati-

92.

93.

94.

95.

96.

97.

van de Mheen H, Stronks K, Looman CWN, Mackenbach JP. Role of childhood health in the explana-

98.

Bosma H, van de Mheen HD, Mackenbach JP. Socio-

class in childhood and general health in adult-

hood: questionnaire study of contribution of psycho-

99.

100.

101.

102.

103.

104.

105.

106.

US Department of Labor. NLSY79: National Lon-

107.

108.

US Department of Labor. NLSY79: National Lon-

109.

Singh-Manoux A, Adler NE, Marmot MG. Subjective social status: its determinants and its associa-

110.

Mayer SE, Jencks C. Poverty and the distribu-

111.

Kaufman JS, Cooper RS, McGee DL. Socioeco-

nomic status and health in blacks and whites: the prob-

112.

Williams DR, Collins C. Racial residential segre-

113.

114.

115.

116.

American Academy of Pediatrics; Committee on Pediatric Research. Race/ethnicity, gender, socioeco-

117.

Gilthorpe MS, Wilson RC. Rural/urban differ-