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Nonparametric Statistics 
The term "parametric" is intended to refer to statistical tests that make assumptions about particular 
population parameters (e.g., equal variances in two groups in the population) or use particular distributions 
for making statistical decisions (e.g., use of the t distribution). The term "nonparametric" is intended to refer 
to statistical tests that do not make some or any of the standard assumptions of parametric tests. The 
distinction is not so clear cut. Sheskin (2011), author of a large tome on nonparametric tests, states "In 
truth, nonparametric tests are really not assumption free, and, in view of this, some sources Marascuilo and 
McSweeney (1977) suggest that it might be more appropriate to employ the term 'assumption freer' rather 
than nonparametric in relation to such tests" (p. 109).  
 
Researchers sometimes turn to nonparametric statistical tests when they suspect that parametric statistical 
tests, such as the t test or ANOVA, have unequal (heterogeneous) variances or the dependent variable is 
nonnormal. Keep in mind that these assumptions are about the population and that, although the sample 
may suggest variance differences or nonnormality, it is not certain that the population will have these 
characteristics. Keep in mind also that the central limit theorem shows that the sampling distribution will be 
approximately normal even when the population is severely nonnormal. As shown in Table 6.3 of your main 
text (Myers, Well, & Lorch, 2010, p. 137), the standard unadjusted t test fairs pretty well in the face of 
unequal variances except when sample size is small, variances are very unequal (e.g., a 4-to-1 ratio), and 
sample sizes are unequal. For non-experimental, field research, and applied work in the social sciences, 
these circumstances may occasionally arise, but they are not extremely common in my experience. 
Remember also that one parametric test adjustment, the Welch's adjustment ("equal variances not 
assumed" in SPSS) for t tests or ANOVA, can mitigate some of the problems arising with unequal variances 
(Algina, Oshima, & Lin, 1994).1   
 
Another justification often cited for using nonparametric tests is that ordinal variables, such as those derived 
from Likert scales, are not truly continuous. I have addressed this issue in other handouts (see "Ordinal 
Analyses" and "Levels of Measurement and Choosing the Correct Statistical Test"). There are a number of 
simulation studies that suggests that if there are five or more ordered categories, there will be relatively little 
harm in treating these ordinal variables as continuous under many conditions (e.g., Johnson & Creech, 
1983; Muthén & Kaplan, 1985; Zumbo & Zimmerman, 1993; Taylor, West, & Aiken, 2006). 
 
Considering all of the above, there are still some circumstances in which nonparametric test are preferred 
over their much more commonly used parametric counterparts. Before we discuss specifics, let's discuss 
how we would evaluate whether one test "performs better" than another test.  
 
Relative Efficiency of a Test 
Both Type I and Type II errors are potential concerns when assumptions of parametric tests are not met. 
Statisticians and researchers generally seek to find a test that provides the lowest of both types of errors as 
well as a test that performs the best under the most common circumstances. When a statistical value (e.g., 
the mean) has a smaller standard error (or, more commonly, the variance of the sampling distribution) 
compared with another test (e.g., median), it is said to have a higher relative efficiency. In general, any 

statistic is often referred to by the lowercase Greek theta, ̂  (the caret symbol signifies a sample estimate), 
and the relative efficiency is computed as a ratio of squared deviations of the statistic from the population 
value, .  
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1 The James test (or James's test) is also a possible alternative. Algina and colleagues found the Welch test to be less sensitive to unequal 
variances but may have more problematic Type I errors when skewness is present. Other studies, such as that by Krishnamoorthy, Lu, and Mathew 
(2007) suggest that the James test may be preferred under the conditions they studied (unequal variances, unequal n's, and skewness) but not as 
optimal as bootstrapping. 
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Table 6.3 in Nussbaum (2014) provides an excellent summary of the circumstances in which nonparametric 
tests outperform parametric tests. The relative efficiency (ARE for asymptotic relative efficiency) is shown in 
the third column, where values greater than 1.0 indicate that the nonparametric test has greater efficiency 
than the parametric test. Nearly all of the conditions in which the ARE is greater than 1.0 occur when the 
distribution is extremely kurtotic or skewed—a double exponential distribution (also known as the Laplace 
distribution).2 The double exponential form involves raising a variable to some power and then raising it 
again to a power. Double exponential distributions may be symmetric or asymmetric, each having a variety 
of forms depending on the choices of the location (center) and spread parameters. The symmetric versions 
are highly kurtotic and the asymmetric versions are highly skewed. In both symmetric and asymmetric 
forms, extreme values are much more likely, which causes conventional parametric tests to be less 
powerful than nonparametric tests. A couple of illustrations of the symmetric version are shown below (both 
from Geraci & Borja, 2018, p. 11).  
 
Double exponential (Laplace) distribution normal (solid orange) vs. Laplace (dotted blue): 

 
Close-up of the extreme right and left tails of the normal (solid orange) vs. Laplace (dotted blue) 
 

 
Brief Summary of a Few Common Nonparametric Tests 
There are a wide variety of nonparametric tests that have been developed (see Sheskin, 2011 for a 
comprehensive overview), and I will discuss just a few of the most common. 

 
Comparing two independent groups. Mann-Whitney U and Wilcoxon rank sum tests are equivalent tests 
(SPSS prints both together and one significance test for the two statistical values, and sometimes they are 
referred to jointly as the Wilcoxon-Mann-Whitney test) that are based on the rank ordering of the cases and 
then a comparison much like the t test on those ranks. This test can be more powerful than the t test, but it 
is problematic if the variances of the two groups are unequal.  

 
2 After the 18th and 19th century mathematician Pierre-Simon Laplace, 1749-1827. 
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Comparing two or more independent groups. The Kruskal-Wallis or the Kruskal-Wallis H test is an 
alternative to between-subjects one-way ANOVA. The scores are ranked and ties are resolved by inserting 
the median of a set of similar values. Another alternative is the rank-transform F test. These tests can 
outperform standard ANOVA if the variances and distributions are similar across the groups.  

 
Comparing two related scores. The most common within-subjects nonparametric test that corresponds with 
the correlated-scores or paired t test is called the sign test. The sign test assigns a plus or minus (two 
possible values) according to whether the score for a case (or pair) increases or decreases. The test then 
determines if there are more pluses or minuses. The sign test is equivalent to a test of whether or not the 
difference has a median equal to zero. If the variable is binary, the test is equivalent to the McNemar's test. 
The Wilcoxon signed rank test, in which the absolute values of the differences are ranked, is a more 
powerful alternative to the sign test. The paired t test has greater relative efficiency when the data are 
skewed or there are many difference scores equal to 0.  

 
Comparing more than two related scores. The most commonly mentioned nonparametric alternative to 
within-subjects ANOVA is Friedman's test, which is distributed approximately as a chi-square. Similar to the 
Kruskal-Wallis test, scores are ranked and ties are assigned grouped median values. Another 
nonparametric alternative to the within-subjects ANOVA is the rank-transformation F test. The rank 
transformation test involves ranking of individual values (rather than per pair) and then a within-subjects 
ANOVA is computed. The test is just one of a group of tests that use parametric test on after values have 
been transformed to ranks. The Friedman and the rank-transformation tests may be better than within-
subjects ANOVA when the distribution is highly skewed, but the relative efficiency of the two depends on a 
number of circumstances. Myers and colleagues (2010) recommend the rank-transformation approach 
when there are more than five levels.  
 
Other Alternatives 
There are several other alternatives to traditional nonparametric tests when assumptions are in doubt. One 
common approach is to transform variables using a nonlinear function (e.g., squaring, square root, 
logarithm, Box-Cox normalizing function) to improve the distribution of the dependent variable. This 
approach is more acceptable in some areas, such as economics, but is less favored in psychology and the 
social sciences because the interpretation becomes more obscured. Still, there are some measures, such 
as reaction time for which transformations are commonly employed (and consequently more understood). 
Notice that nonparametric tests that involve ranking the data are really employing a nonlinear 
transformation. This is particularly evident for tests such as the rank-transformation F test for within-
subjects, because the parametric F test is used with the ranked values.  
 
More recently, tests using trimmed means, in which, most often, the lowest and highest 5% of scores are 
trimmed from each group, have gained popularity (e.g., Tukey & McLaughlin, 1963; Yuen, 1974). Trimming, 
as you might expect, reduces the variance and, consequently, reduces the standard error. This approach 
can have advantages over parametric tests when data are heavily skewed or kurtotic (e.g., Doksum & 
Wong, 1983). The parametric t test or ANOVA is then used with the trimmed data. The disadvantages to 
trimmed approaches are that a proportion of the data are lost and potentially informative or valuable scores 
are not used.  
 
Another approach that is gaining considerable credibility with some types of analyses (e.g., hierarchical 
linear modeling), is the use of standard error adjustments, called robust standard errors (also known as 
Huber-White, Eiker-Huber-White, or sandwich estimators) that can help with heterogeneity of variance 
issues and nonnormal distributions. The approach shows considerable promise in a number of simulations 
studies (e.g., Long & Ervin, 2000) but has been slow to be incorporated into simpler statistical tests such as 
t tests and ANOVA.  
 
Perhaps the most popular approach to distribution problems is to use bootstrapping (Efron, 1979). 
Bootstrap estimates are derived from repeated resampling from the study data set with the same sample 
size, just retaken with replacement. Usually at least 500 to 1000 samples (replications) are recommended. 
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Standard errors and confidence limits can then be estimated as if the multiple samples formed a miniature 
sampling distribution (non-parametric bootstrapping uses the distribution of the samples and parametric 
bootstrapping restricts the distribution to a particular statistical distribution shape, such as normal, binomial, 
Poisson etc.). The approach can be very useful when the standard error is undefined, when sampling 
distribution is nonnormal, or there are outliers. Bootstrap estimates are not widely available in standard 
software packages for all types of tests, and it is not fully resolved whether and under what conditions 
bootstrapping has advantages over standard parametric tests. In a simulation study for comparing multiple 
means (usually compared with ANOVA) in small sample sizes (n per cell < 15) when there were unequal 
variances, Krishnamoorthy and colleagues (Krishnamoorthy, Lu, & Mathew, 2007) showed that parametric 
(normal) bootstrap estimates outperformed Welch's test, the generalized F test, and the James test, 
particularly for small sample sizes, although the James test was close to comparable in many 
circumstances. Parras-Futros (2014) showed similar advantages with a nonparametric bootstrap approach.  
 
Bayesian estimation is another potential method of addressing analysis challenges with small sample sizes 
and distributional problems. Bayesian estimation does not make standard distributional assumptions per se, 
but derives solutions based on prior distributions which can be based on prior research, theory, or tailored 
to the observed data. An advantage is that the Bayesian approach depends more on the number of 
sampling draws (assuming the commonly used Markov chain Monte Carlo or MCMC estimation process) 
than on the sample size (Kadane, 2015). A challenge for the Bayesian approach, however, is that high 
quality prior information about the distribution is especially needed with small samples. Accurate results with 
smaller sample sizes are reliant on informative (strong) and good prior values (van de Schoot et al., 2014). 
Caution is especially needed for small samples when using diffuse (weak, or noninformative) priors 
(Gelman, 2006). Without careful attention to priors and judicial implementation, Bayesian estimation with 
small samples can lead to worse estimates than traditional or nonparametric tests (McNeish, 2016).   
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