Example of a Mixed Factorial ANOVA

A 3 × 3 (Lecture Type × Time) mixed between and within factorial analysis of vocabulary scores¹

Syntax

```
*these first lines of syntax compute the mean for the three measurements just to get the main effect mean for
descriptive purposes. It is not needed for the analyses.
COMPUTE vocab=mean(baseline,twowks,fourwks).
MEANS VARS=vocab BY lecture.
MEANS VARS=baseline twowks fourwks by lecture.
GLM baseline twowks fourwks BY lecture
/WSEACTOR=time 2
```

```
/WSFACTOR=time 3
/WSDESIGN=time
/DESIGN=lecture
/PRINT=DESCRIPTIVE ETASQ
/EMMEANS=tables(lecture)
/EMMEANS=TABLES(time*lecture)
/PLOT=PROFILE(time*lecture).
```

Menus

Analyze \rightarrow General Linear Model \rightarrow Repeated Measures

Enter number of levels of within-subjects factor and name it. Click Add. Click the Define button. Drag over the variables for the within-subjects factor (here, baseline, twowks, and fourwks). Move over Between-Subjects Factor

Subjects Factor.

	Report		
vocab			
lecture type of lecture	Mean	N	Std. Deviation
1.000 physical science	40.0000	4	5.23521
2.000 social science	26.0000	4	7.10764
3.000 history	34.5000	4	3.15642
Total	33.5000	12	7.75574

Report baseline twowks fourwks lecture type of lecture 1.000 physical science Mean 47.75000 44.25000 28.00000 Ν 4 4 4 Std. Deviation 7.410578 7,438638 4.573474 2.000 social science Mean 41.25000 26.00000 10.75000 Ν 4 4 4 4.349329 13.832329 Std. Deviation 4.112988 40.00000 38,50000 25.00000 3.000 history Mean 4 4 4 Ν Std. Deviation 3.915780 5.802298 5.228129 21.25000 Total Mean 43.00000 36,25000 Ν 12 12 12 Std. Deviation 5.257030 11.817745 9.430367

¹ This numeric example is adapted from Keppel, G., & Zedeck S. (1989). *Data analysis for research designs*. New York: Freeman. Explanation of the mixed factorial using this example is in the handout "Factorial ANOVA for Mixed Designs Example: SPSS and R" for this class.

Mauchly's Test of Sphericity a

Measure: MEASURE_1

					Epsilon ^b		
Within Subjects Effect	Mauchly's W	Approx. Chi- Square	df	Sig.	Greenhouse- Geisser	Huynh-Feldt	Lower-bound
time	.691	2.952	2	.229	.764	1.000	.500

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional

to an identity matrix.

a. Design: Intercept + lecture Within Subjects Design: time

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests of Within-Subjects Effects table.

Multivariate Tests a

Effect		Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared
time	Pillai's Trace	.963	104.309 ^b	2.000	8.000	.000	.963
	Wilks' Lambda	.037	104.309 ^b	2.000	8.000	.000	.963
	Hotelling's Trace	26.077	104.309 ^b	2.000	8.000	.000	.963
	Roy's Largest Root	26.077	104.309 ^b	2.000	8.000	.000	.963
time * lecture	Pillai's Trace	.683	2.335	4.000	18.000	.095	.342
	Wilks' Lambda	.332	2.942 ^b	4.000	16.000	.053	.424
	Hotelling's Trace	1.966	3.441	4.000	14.000	.037	.496
	Roy's Largest Root	1.942	8.741 ^c	2.000	9.000	.008	.660

a. Design: Intercept + lecture

Within Subjects Design: time

b. Exact statistic

c. The statistic is an upper bound on F that yields a lower bound on the significance level.

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source		Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
time	Sphericity Assumed	2974.500	2	1487.250	52.184	.000	.853
	Greenhouse-Geisser	2974.500	1.528	1946.12B	52.184	.000	.853
	Huynh-Feldt	2974.500	2.000	1487.25D	52.184	.000	.853
	Lower-bound	2974.500	1.000	2974.500	52.184	.000	.853
time * lecture	Sphericity Assumed	320.500	4	80.125	2.811	.057	.385
	Greenhouse-Geisser	320.500	3.057	104.847	2.811	.078	.385
	Huynh-Feldt	320.500	4.000	80.125	2.811	.057	.385
	Lower-bound	320.500	2.000	160.250	2.811	.113	.385
Error(time)	Sphericity Assumed	513.000	18	28.500			
	Greenhouse-Geisser	513.000	13.756	37.293			
	Huynh-Feldt	513.000	18.000	28.500			
	Lower-bound	513.000	9.000	57.000			

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average						
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Intercept	40401.000	1	40401.000	459.683	.000	.981
lecture	1194.000	2	597.000	6.793	.016	.602
Error	791.000	9	87.889			

Newsom Psy 521/621 Univariate Quantitative Methods, Fall 2024

Newsom

Psy 521/621 Univariate Quantitative Methods, Fall 2024

 7
 history BASELINE 4 40.00
 3.915780
 7.930807

 8
 history TWOWKS 4 38.50
 5.802298
 7.930807

 9
 history FOURWKS 4 25.00
 5.228129
 7.930807

#plot the data

print(mixplot)

>

The sample size was too small to use MANOVA for repeated measures here, but the R code for obtaining the correct results with the car package is:

```
> library(car)
#need to create a factor and frame for appropriate number of IV levels, called "time" here
> time <- c(1,2,3)
> time <- as.factor(time)
> condframe <- data.frame(time)
> d$LECTURE <- factor(d$LECTURE) #convert LECTURE to factor--car requires for contrasts command
> model2 <- lm(cbind(BASELINE, TWOWKS, FOURWKS) ~ LECTURE, data=d, contrasts=list(time=contr.sum,
+ LECTURE=contr.sum))
> analysis <- Manova(model2, idata=condframe, idesign=~time, type="III")
> summary(analysis)
Obtaining partial eta squared:
```

```
> library(effectsize)
> eta_squared(analysis)
# Effect Size for ANOVA (Type III)
Parameter | Eta2 (partial) | 95% CI
LECTURE | 0.60 | [0.13, 1.00]
time 0 85 | [0.72, 1.00]
```

LECIURE	0.00	LO.13,	T.00]	
time	0.85	[0.72,	1.00]	
LECTURE:time	0.38	[0.00,	1.00]	

Example Write-Up

A 3 (physical science, social science, history) × 3 (baseline, two weeks, four weeks) mixed factorial ANOVA, with one between-subjects factor and one within-subjects factor, was conducted to investigate whether changes in vocabulary over time differed by lecture type. The univariate repeated-measures tests and their sphericity corrections were examined to determine significance because of the small sample size (Algina & Kesselman, 1997). There was a significant main effect for lecture type, F(2,9) = 6.79, p =, partial $\eta^2 = .60$, with the highest vocabulary scores in physical science M = 40, SD = 5.24, followed by history (M = 34.50, SD = 3.16), and social science (M = 26.00, SD = 7.11). A significant main effect for time, F(2,18) = 52.18, p < .001

(for sphericity assumed and corrections), partial $\eta^2 = .85$, indicated that there was a decline in vocabulary scores over time (baseline M = 43.00, SD = 5.26, two weeks 36.25, SD = 11.42, four weeks M = 21.25, SD = 9.42). The interaction did not reach conventional levels of significance for the the sphericity assumed results F(4,18) = 2.81, p = .057, the Greenhouse-Geisser (p = .08), or the Huynh-Feldt corrections (p = .06), partial $\eta^2 = .39$. The results indicated that there may be some tendency for vocabulary scores to decline at different rates across lecture types, although caution is warranted in this interpretation because the results may not be statistically reliable.

Given the very small sample size in this example, the univariate repeated tests of repeated measures are more appropriate. But had we had even 20 or so cases or more, I would have recommended using the multivariate repeated measures test statistics, such as the Pillai's trace, given the Algina-Keselmen guidelines.

Several possible follow-up tests might explore the main effects for lecture or time by conducting main effect contrasts. For example, it might of interest to know whether there was a significant difference between baseline and two-week vocabulary scores overall or whether history and social science vocabulary scores differed significantly overall. In addition, because the interaction effect was marginally significant, some authors might choose to conduct simple effect tests, such as exploring whether baseline scores differed among the three lecture types (using one-way ANOVA) or social science scores changed significantly over time (within-subjects ANOVA). Those simple effect tests might be followed by simple contrasts, such as examining whether social science scores differed between baseline and two weeks (paired *t* test) or whether social and physical science scores differed at four weeks (one-way ANOVA planned contrast).