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Summary of Minimum Sample Size Recommendations for SEM 
Below is a table summary of some minimum sample size recommendations for structural equation modeling 
commonly noted in the literature and online. Minimum sample size recommendations are based on having 
sufficient sample size to reduce the likelihood of convergence problems and to obtain unbiased estimates or 
standard errors. The question of whether sample size is large enough to achieve sufficient power for 
significance tests, overall fit, or likelihood ratio tests is a separate question that is best answered by power 
analysis for specific circumstances (see the handout " Power Analysis for SEM: A Few Basics" for this class, 
and Hancock, 2013 and Lee, Cai, & MacCallum, 2012, for reviews). Please be cautioned that the numbers 
below are rough approximations based on recommendations from authors who have conducted simulation 
studies and that they may not apply equally to all circumstances. They should not be taken as definitive, 
infallible, or exact. Simulation studies can only examine a few conditions at a time and often involve simplified 
conditions compared with actual practice.1  
Estimator Recommended 

Minimum N 
Example 
Citations 

Comments 

ML with 
multivariate normal 
data  

a > 100  
b> 200-400 
c5:1 ratio of 
cases to free 
parameters  
d10:1 ratio of 
cases to free 
parameters 

aAnderson & 
Gerbing (1984) 
b Jackson 
(2001) 

cTanaka (1987) 
c,dBentler & 
Chou (1987) 

These suggested sample sizes are based on ML estimation with multivariate normal data, 
which may be somewhat rare in practice, and correctly specified models. For analyses with 
fewer than 100 or so cases, some authors would suggest using t critical values instead of z 
critical values for parameter significance tests. The complexity of the model is important 
and the minimum needed for simple path models, which are equivalent to regression 
models, may be different from complex full structural models with latent variables. Though 
even the 10:1 ratio is often considered safe, simulation work by Nevitt and Hancock (2004) 
suggest that there are some circumstances when this is not sufficient.  

MLM for nonnormal 
continuous 
variables (ML with 
robust standard 
errors and Satorra-
Bentler scaled chi-
square) 

> 250 Hu & Bentler 
(1999); Yu & 
Muthén (2002) 

When data are multivariate normal (and no missing data), standard ML and MLM will have 
the same estimates. Overcorrection of standard errors can occur if sample sizes are too 
small (e.g., < 250).  

Bootstrap for 
nonnormal 
continuous 
variables 

> 200-1000 Nevitt & 
Hancock (2001) 

When data are multivariate normal, standard ML is preferable in terms of unbiased and 
efficient standard errors. Standard errors were well below true values when sample sizes 
were < 1000 for moderately nonnormal data. Bootstrap estimates of standard errors do not 
perform well with small sample sizes (< 200), but performance may depend on the 
complexity of the model. They note that a sample size of 100 could be sufficient for simple 
models. Nevitt and Hancock recommend 250 or more bootstrap samples be used for 
estimation, although many sources recommend 500-1000 bootstrap samples in various 
contexts, Nevitt and Hancock find that more than 250 bootstrap samples did not improve 
estimates.  

Bootstrap tests of 
indirect effects 

>50-500 Creedon & 
Hayes (2015); 
Fritz, Taylor, & 
MacKinnon 
(2012); Tofighi 
& MacKinnon 
(2015) 

Percentile bootstrap confidence intervals for indirect effects do not show seriously inflated 
Type I error even for very small sample sizes of 50 or 100 (Creedon & Hayes, 2015; Fritz, 
Taylor, & MacKinnon, 2012; Tofighi & MacKinnon, 2015), but bias-corrected and 
accelerated bias-corrected methods required at least 500 cases to avoid problematic Type 
I error. Results from Fritz and colleagues showed that the Type I error problems depended 
on the effect sizes of the a and b effects, with larger effects sometimes showing more 
problematic rates or lower than expected power. Although Taylor and colleagues and 
Tofighi and MacKinnon found that the Monte Carlo numerical integration approach 
performed similarly to the percentile bootstrap method, results reported by Creedon and 
Hayes suggested percentile bootstrap was superior for the smallest sample sizes. 

MLR for continuous 
nonnormal missing 
data (robust ML) 

> 400 Savalei & 
Bentler (2005); 
Yuan & Bentler 
(2000) 

Though more simulation work is probably needed, the robust adjustments with full 
information maximum likelihood appear to work well when data are MAR and sample sizes 
are 400 or above.  

Robust DWLS for 
with binary or 
ordinal variables 
(WLSMV in Mplus 
and lavaan) 

> 200-500 Bandalos 
(2014); Forero, 
Maydeu-
Olivares, & 
Gallardo-Pujol 
(2009) 

Unadjusted categorical WLS does (diagonal or full weight matrix) does not perform as well 
as the mean and variance adjusted (robust) version of DWLS (Bandalos, 2014). 500 or 
more cases may be needed for sufficient power to reject models. Less than 200 seems to 
be associated with serious standard error bias and inflated Type I errors; 500 cases may 
be needed for nominal Type I error rate. Generally, more powerful than MLR for binary and 
ordinal variables. 

Robust ML for 
binary and ordinal 
variables (MLR with 
categorical 
designation in Mplus) 

> 200-500 Bandalos 
(2014) 

Unadjusted marginal ML for binary and ordinal variables (full information ML) does not 
perform as well as the mean and variance adjusted (robust) version. Like robust DWLS, 
less than 200 seems to be associated with serious standard error bias and inflated Type I 
errors; 500 cases may be needed for nominal Type I error rate. Computationally more 
intensive, but performs comparably to WLSMV in most cases. May have less bias in 
standard errors than WLSMV for small sample sizes with asymmetric distributions in some 
cases (Bandalos, 2014).  

 
1 See handouts "Alternative Estimation Methods," "SEM with Nonnormal Continuous Variables," and “SEM with Categorical Variables” for more 
information on each of the estimation approaches described in the table.  
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There are many issues when considering minimum sample sizes. The minimum sample size recommendation 
of 100 comes from simulation studies (e.g., Anderson & Gerbing, 1984) that indicate an unacceptable number 
of models failed to converge when the sample size was 50 and a much more acceptable number (5% or less) 
failed to converge if the sample size was 100. Sufficient power to reject a model based on the chi-square test 
of the model is another important consideration, and how alternative fit indices perform with different sample 
sizes is another (e.g., Hu & Bentler, 1999). Then there is sufficient power for individual parameter tests 
(loadings, paths). The ratio of cases to free parameters, or N:q, which is sometimes stated in terms of 
indicators in the context of CFA, is commonly employed for minimum recommendations, but may not be as 
important as other considerations such as the overall sample size (> 200-400) and magnitude of the loadings 
(e.g., standardized value > .60), which may be more important (Jackson, 2007). In fact, Wolf and colleagues 
(Wolf, Harrington, Clark, & Miller, 2013) show that having more indicators per factor leads to smaller required 
sample sizes rather than larger required sample sizes in general. Whether the model is misspecified—whether 
the true model differs from the one tested—is also critical to how many tests perform under various sample 
size conditions. Absolute fit indices (e.g., chi-square, RMSEA) appear to be more sensitive to misspecification 
than relative fit indices (e.g., CFI). Hu and Bentler (1999) suggested that there may be a tendency for the 
combination rules of absolute and relative fit indices to over reject models if sample size is less than or equal to 
250. Jackson's results suggest a highly complex set of interactions among specific fit index, loading 
magnitude, misspecification, and the N:q ratio, making clear that there is no simple rule to go by. 
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