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Power Analysis for SEM: A Few Basics 
Overall Model Fit 
Much of the literature on power analysis in SEM has focused on estimating power of chi-square to 
detect false models in the population (MacCallum, Browne, & Sugawara, 1996) or to detect 
significant differences between nested models (Satorra & Saris, 1985; Saris & Satorra, 1993). The 
original Satorra and Saris approach involved specifying hypothesized values for the parameters in 
the model and then estimating effect size from the resulting fit function values relative to a 
population value or the fit function for an alternative model.   
 
MacCallum and colleagues suggested a simplified approach using the Root Mean Square Error of 
Approximation (RMSEA), which can be simply computed from the chi-square (or fit function) and 
degrees of freedom.1 They showed that a noncentrality parameter, λ, which estimates the 
magnitude of the effect (falsity of the model) in the population, can be computed from the RMSEA 
value.   
 

( )( )( )21 dfN RMSEAλ = −   
 
The noncentrality parameter can be used with the chi-square distribution to estimate power. Power 
for overall model fit is the estimate that the probability for this noncentrality parameter is greater 
than the null value (which is equal to the df for a model that fits perfectly) using the chi-square 
distribution (e.g., in a spreadsheet like Excel). The value of this approach is that one can more 
readily describe the fit of a model in practical terms, compare values of the RMSEA for alternative 
models, and consider power to detect close fit rather than exact fit (Lee, Cai, & MacCallum, 2012). 
The same process can be used for relative fit, by comparing the difference in probabilities for 
noncentrality parameter when RMSEA is less than .05 vs. greater than .08, for instance (e.g., 
Hermida, Luchman, Nicolaides, & Wilcox, 2015). Alternatively, Preacher and Coffman 
(http://www.quantpsy.org/rmsea/rmsea.htm) as well as Timo Gnambs 
(https://timo.gnambs.at/research/power-for-sem) have created online calculators or code 
generators which can be used for estimating power for a given RMSEA and sample size or 
estimating sample size for a given RMSEA and an acceptable power, such as .8.  
 
Although this is important work, as a researcher who has needed power analysis for grant 
proposals, I have not found this type of power analysis for SEM models that useful. I have typically 
been more concerned with demonstrating adequate power to detect significance for particular path 
coefficients rather than sufficient power for rejecting false models overall. The methods described 
above can, of course, be used to estimate power for particular parameters, if the significance of the 
parameter is tested using a nested chi-square test (e.g., comparing the fit of a model with a path 
set to 0 to one in which the path is freely estimated). Quantifying the expected effect size in terms 
of either chi-square difference values or difference in RMSEA values for this purpose is 
cumbersome, however. 
 
Specific Parameter Tests 
A simple method that I have used is to approximate power for path coefficients in a structural 
equation model is to conduct a power analysis for the significance of coefficients in a regression 
analysis (see the "Sample Size and Power for Regression" handout for my multiple regression and 
multivariate quantitative methods course). This approach most likely provides reasonable 
approximations if the estimates of the expected effect sizes (e.g., standardized coefficients) are 
appropriate, because the statistical test of the path in a path model is essentially the same 
(Hancock, 2013). Using this proxy approach depends on whether you can make sensible decisions 
that take into account whether the analyses that the effect sizes used regression or SEM, whether 

 
1 ( ) ( )( )2RMSEA / 1dfdf Nχ=  − −    
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the variables involved were measured variables or latent variables, how reliable the measured 
variables were, and other specifics about the model. In the end, this is a less than perfect 
approach. 
 
Monte Carlo Approach 
A more precise method is the one proposed by Muthén and Muthén (2002), which uses the 
MONTECARLO procedure in Mplus designed for simulations to conduct power analyses. The 
Monte Carlo approach uses simulated data, taking repeated samples under a particular population 
model specified with certain parameter values. The model is then tested in each of the multiple 
random samples that are drawn (replications) and the proportion of significant results estimates the 
power (under the condition that Ha is true in the population, power is equal to .8 when 80% of the 
samples find a significant result for the parameter). This approach to power estimation is perhaps 
the most flexible because of the ability to incorporate measurement models, tailor the power 
analysis to specific estimation approaches, take into account nonnormality, and estimate power 
under various missing data conditions (Davey & Salva, 2010).  
 
The MONTECARLO feature in Mplus makes the model specification process relatively simple.2  
Below, I provide a very simple analysis example in Mplus, with a latent variable predicting a 
measured outcome. The example could be varied to use different loading values, adjust the effect 
for unreliability of the measured dependent (e.g., by setting up a single indicator latent variable with 
measure residual variance equal to 1 – reliability × variance), or incorporate covariates.  
 
I also illustrate with an example described by Jobst and colleagues (2023) using the semPower 
package in R that can be used with lavaan code. The semPower (Moshagen & Erdfelder, 2016) 
package uses a likelihood ratio testing approach to power for overall fit or single or multiple 
parameters. 
 
The general approach is to simulate data, estimating power for various samples sizes and effect 
sizes.  As with any a priori power analysis, you can base the estimates on specific effect sizes 
found in the related literature or use a range of effect sizes based on conventions.  It is possible to 
work with unstandardized values from prior research where the variances are known, but the 
process can also be simplified by using standardized values and working with general effect size 
standards (Cohen, 1988). In the example below, I use the .1, .3, and .5 values associated with 
Cohen's conventions for small, medium, and large effects for my standardized path estimate. 
 
Further examples for nonnormal data, growth curve models, and more are provide in the Muthén 
and Muthén (2002) paper, at the Mplus website (https://www.statmodel.com/power.shtml), and at 
Paul Tremblay's website (http://publish.uwo.ca/~ptrembla/lecture12-fall2013.pdf). 
 
Mplus Monte Carlo Example 
A simple example below illustrates how the Mplus MONTECARLO feature can be used to estimate 
power for different models.  This is done empirically by generating many samples of a certain size 
for specific models with parameters set to desired values. The sample sizes and the parameter 
values can be varied as I did for multiple variations of the model below.  I used complete normal 
data, but nonnormal data, different estimators, and missing data could be incorporated.  Fit 
information and parameter estimates can be examined.  Below, the % sig coeff column gives 
the percentage of samples that had a significant parameter estimate (for the ON statement). The 
desired power is usually .8 and this particular run with N = 200 and effect size equal to .3 had 
power equal to .985.   
 
title: simple illustration of power analysis with 
   normal complete data (see also Muthen & Muthen, 2012); 

 
2 See also the simsem package in R and Davey and Savla (2010) for a similar approach with Amos software 
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  montecarlo: 
  names = y1 x1-x4;  !one outcome and one latent variable; 
  nobservations = 200;  !choose desired sample size (vary); 
  nreps = 1000; !use at least 500 samples for stability of estimates; 
  seed = 060418; !can reproduce the data if same seed is used; 
 
  analysis:  estimator = ml; 
    model=nomeanstructure; information=expected; 
  model population: 
  eta1 by x1-x4*.8;  !gives standardized loadings of .8 here; 
  eta1@1; !set factor variance to one (standardize); 
  x1-x4*.36; !using 1-loading squared for measurement residuals; 
 
  ! can vary particular standardized parameter value; 
  ! such as .1, .3, and .5 based on Cohen's sm, med, lg; 
  y1 on eta1*.3; 
  y1@.91;  !set disturbance to 1 - sqrt(beta); 
 
  model:  !generally has same specifications as above; 
  eta1 by x1-x4*.8;  !gives standardized loadings of .8 here; 
  eta1@1; !set factor variance to one (standardize); 
  x1-x4*.36; !using 1-loading squared for measurement residuals; 
 
  ! can vary particular standardized parameter value; 
  ! such as .1, .3, and .5 based on Cohen's sm, med, lg; 
  y1 on eta1*.3; 
  y1@.91;  !set disturbance to 1 - sqrt(beta); 
 
  output: tech9; 
 

Output (some omitted) 
 
INPUT READING TERMINATED NORMALLY 
simple illustration of power analysis with 
normal complete data (see also Muthen & Muthen, 2012); 
 
SUMMARY OF ANALYSIS 
 
Number of groups                                                 1 
Number of observations                                         200 
 
Number of replications 
    Requested                                                 1000 
    Completed                                                 1000 
Value of seed                                                60418 
 
Number of dependent variables                                    5 
Number of independent variables                                  0 
Number of continuous latent variables                            1 
 
 
Estimator                                                       ML 
Information matrix                                        EXPECTED 
Maximum number of iterations                                  1000 
Convergence criterion                                    0.500D-04 
Maximum number of steepest descent iterations                   20 
 
Chi-Square Test of Model Fit 
        Degrees of freedom                       6 
        Mean                                 6.103 
        Std Dev                              3.480 
        Number of successful computations     1000 
 
SRMR (Standardized Root Mean Square Residual) 
 
        Mean                                 0.030 
        Std Dev                              0.013 
        Number of successful computations     1000 
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MODEL RESULTS 
                              ESTIMATES              S. E.     M. S. E.  95%  % Sig 
                 Population   Average   Std. Dev.   Average             Cover Coeff 
 ETA1     BY 
  X1                  0.800     0.7960     0.0629     0.0613     0.0040 0.947 1.000 
  X2                  0.800     0.7972     0.0623     0.0614     0.0039 0.951 1.000 
  X3                  0.800     0.7947     0.0642     0.0613     0.0041 0.937 1.000 
  X4                  0.800     0.7953     0.0657     0.0615     0.0043 0.922 1.000 
 
 Y1       ON 
  ETA1                0.300     0.2989     0.0753     0.0735     0.0057 0.946 0.985 
 
 Variances 
  ETA1                1.000     1.0000     0.0000     0.0000     0.0000 1.000 0.000 
 
 Residual Variances 
  Y1                  0.910     0.9100     0.0000     0.0000     0.0000 1.000 0.000 
  X1                  0.360     0.3538     0.0462     0.0477     0.0022 0.939 1.000 
  X2                  0.360     0.3552     0.0496     0.0479     0.0025 0.934 1.000 
  X3                  0.360     0.3550     0.0484     0.0477     0.0024 0.937 1.000 
  X4                  0.360     0.3580     0.0499     0.0480     0.0025 0.942 1.000 
 

The results above are from one run, in which N = 200 and the effect size equaled .3. The figure 
below was generated in Excel using the power estimates I obtained for all of the Monte Carlo runs 
using all the sample sizes (N=100, 200, 500, and 1000) and all of the effect sizes (β = .1, .3, and 
.5).  

 
 

R semPower Example  
This example runs one of the several a priori power examples described by Jobst and colleagues 
(2023). The semPower package (Moshagen & Erdfelder, 2016) uses a likelihood ratio (nested 
model comparison) approach to power. A population model is constructed with the parameter 
values that are expected based on prior research, theory, or a range of possible arbitrary values. 
The example is their “local hypothesis” is an estimate of the sample size needed to detect 
significance one path from intelligence to financial well-being for power equal to .80. (note that the 
sample.nobs = 1000 is only an arbitrary value that is not related to the sample size estimate 
here and does not need to be changed). 
 
> library(lavaan) 
> library(semPower) 
>  
> #parameter values expected in the planned study are inserted into the hypothesized model 
> #test of power to detect significance for path of intelligence predicting financial well-being 
 
> population.model = ' 
+ # define factors and set all loadings to .7 
+ intelligence =~ .7*x1+ .7*x2+ .7*x3 
+ social.status =~ .7*x4+ .7*x5+ .7*x6 
+ well.being =~ .7*y1+ .7*y2+ .7*y3 
+ # set all item residual variances to .51 (=1-.7*.7) 
+ x1~~ .51*x1 

0

0.2

0.4

0.6

0.8

1

1.2

100 200 500 1000

Pr
op

or
tio

n 
Si

g

Sample Size

Power

0.1 0.3 0.5



Newsom   
Psy 523/623 Structural Equation Modeling, Spring 2025   5 
 
+ x2~~ .51*x2 
+ x3~~ .51*x3 
+ x4~~ .51*x4 
+ x5~~ .51*x5 
+ x6~~ .51*x6 
+ y1~~ .51*y1 
+ y2~~ .51*y2 
+ y3~~ .51*y3 
+ # set factor variances to 1 
+ intelligence~~ 1*intelligence 
+ social.status ~~ 1*social.status 
+ # define orthogonal exogenous factors 
+ intelligence~~ 0*social.status 
+ # define regression relationship 
+ well.being ~ .3*intelligence + .6*social.status 
+ # define residual variance of well.being (=1-(.3^2+.6^2)) 
+ well.being ~~ .55*well.being' 
>  
> #then model is specified without parameter values to estimate power 
> hypothesized.model = ' 
+ intelligence =~ x1+ x2+ x3 
+ social.status =~ x4+ x5+ x6 
+ well.being =~ y1+ y2+ y3 
+ # fix slope of intelligence to zero 
+ well.being ~ 0*intelligence + social.status' 
> cov.population.model = fitted(sem(population.model))$cov 
> fit = sem(hypothesized.model, sample.cov = cov.population.model,  
+           sample.nobs = 1000, sample.cov.rescale = FALSE) 
>  
>  
> cov.hypothesized.model = fitted(fit)$cov 
> apriori = semPower.aPriori(SigmaHat = cov.hypothesized.model,  
+       Sigma = cov.population.model, alpha = .05, power = .80, df = 1) 
> summary(apriori) 
 
semPower: A priori power analysis 
                                    
 F0                        0.062066 
 RMSEA                     0.249130 
 Mc                        0.969444 
                                    
 df                        1        
 Required Num Observations 128      
                                    
 Critical Chi-Square       3.841459 
 NCP                       7.882380 
 Alpha                     0.050000 
 Beta                      0.198331 
 Power (1 - Beta)          0.801669 
 Implied Alpha/Beta Ratio  0.252104 

  
Results include model fit estimates for chi-square as well as RMSEA and McDonald’s NCI for 
relative fit which can be of use for overall model fit. But these are not of interest in this particular 
power analysis. The sample size needed for power equal to .80 is listed under “Required num 
Observations” and indicates 128 is needed. One could then alter the parameter values in the 
population model to test different effect sizes to obtain a range of sample sizes depending on the 
effect size the way I did above with Mplus. 
 
Other Software 
The Saris and Satorra methods (Satorra & Saris, 1985; Saris & Satorra, 1993) for power analyses 
can be conducted with the semTools package in R. A shiny app  in R developed by Jak and 
colleagues (Jak et al., 2021) implements the approach by MacCallum and colleagues. There is an 
online calculator from Daniel Soper, but there is not much detail on how these values are 
computed, so I would do a little more investigation before using or citing this resource 
https://www.danielsoper.com/statcalc/calculator.aspx?id=89.  
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