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Basics of Path Analysis 
 
Wright’s Rules of Tracing and the Fundamentals of Path Analysis 
 
Sewall Wright (1918, 1934) developed a method of estimating causal path coefficients by 
decomposing the correlations among a set of variables. He articulated a set of rules for 
examining a path diagram that would allow for this mathematical decomposition.1  The 
correlation of any two variables in a path diagram can be expressed as the sum of coefficients 
that connect the two variables.  The connection between one variable and another variable, 
then, can often be made through more than one route.   
 

1)  No loops are allowed.  In tracing from one variable to another, you cannot pass through 
the same variable twice following a particular route. 
 
2)  No going forward and then backward.  Once you have traveled along a route forward, you 
cannot travel backward to get to the variable at the end point. (Only use common causes to 
account for a correlation between two variables, not common outcomes). 
 
3)  Only one curved arrow is allowed in tracing from the first variable to the last variable in 
any route. 

 
Tracing Example2 

 

 
 
In the above diagram, lower case letters represent values of the standardized coefficients.  For 
curved arrows, they represent correlations; for straight arrows, they represent regression 
coefficients; and for the short arrows, they represent the value of the error or disturbance. 

 
By using Wright's tracing rules, one can obtain the value of the correlation between any two 
variables, by adding up the values of the coefficients that link them—provided the rules are 
followed. Every route between the two variables (acceptable according to the rules) is traced.  
The coefficients that make up each route are multiplied. If there are multiple routes that link the 
two variables, products for each route are added together.  
 

 
1 Note that these rules are often worded differently by different authors and I provide a paraphrased and reorganized version.  
Also, the RAM style of depicting path models that is used by the Kline text in most instances may be confusing at times (e.g., 
variables with circular arrows), but we will discuss the differences from the above path model depiction at a future date. 
2 This example is adapted from Loehlin, J.C. (1992). Latent variable models (2nd Ed.).  Hillsdale, NJ: Erlbaum.  
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 To find the correlation between B and D (or rBD), two routes are possible:  b and fa.  So, 
the value of rBD is equal to b + fa.  If b = .3, f = .2, and a = .4, so rBD = .3 + (.2)(.4) = .38. 

 
  rCD  = gb + ha. 

 
  rAB  is simply equal to f, because the curved arrow represents a correlation. 
  
 rAE  = ad + fbd + hc 
 
Some examples of rule violations: 
 CDr cd  (no forward and back—no common effects, only common causes) 

 ACr fg  (no two double head arrows) 

 ABr abf  (no loops) 
 

Decomposing the Correlation Matrix 
 
Although this seems like just a fun little game, it turns out to be immensely useful.  Instead of 
computing the correlations between two variables, one can work backward from the correlations 
to derive the path coefficients.  Taking a simple path diagram representing a two variable 
regression model, and assuming some values for the correlations between our three variables, 
we can derive the path coefficients.   
 
Assume that r12 = .50, r1Y =.65, and r2Y = .70. 
 

 
 
From our tracing rules, we know 1 1 12 2Yr r   and 2 2 12 1Yr r   .  We can plug in the known 

values and solve for 1 and 2.  
 

1 2

2 1

.65 .50

.70 .50

 
 

 
 

 

 
by rearranging, substituting, and solving for 1 and then 2, we get 1 = .4 and 2 = .5.  These 
coefficients are the standardized regression coefficients, because we started with a correlation 
matrix (i.e., standardized variables). 
 

The disturbance term, e, is the amount of unaccounted for variance in Y and is equal to 21 R .  
We know from regression analysis that 2 2 2

1 2 1 2 12R r      .  So,   2 2 2.4 .5 .5 .4 .5 .61R     .  

The disturbance term then equals 1 .61 .62e      What we have just done is decompose the 
correlation matrix into unique values for the coefficients that are implied by the model we 
specified.  
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Matrices 
Let’s return to a path diagram, using a simple example with a single indirect path. The figure 
below uses all Y variables to keep the notation simple and each path in labeled as a 
standardized path with two subscripts to keep them separate. The first subscript is the “effect,” 
or dependent variable in the regression, and the second subscript is the “cause,” or the 
independent variable in the regression. For example, for coefficient 32, the order of the 
subscripts is because Y3 is predicted by Y2.   

 
We can organize the all of the path coefficients into a (lower triangle) correlation matrix, each 
decomposed into the paths that make up each coefficient. The rows and the columns for the 
matrix correspond to each of the three variables, Y1, Y2, and Y3. 
                               Y1               Y2                Y3 

Y1 

21

31 21 32 32


   

 
 
 
  

 
 

Y2 
 

Y3 
 
So, the correlation between Y1 and Y2 is r12 and that is equal to the path 21, a simple direct 
effect. Correlation r13, however, is decomposed into the two possible paths, 31 and 2132. 
 
Covariances 
I present path analysis in terms of correlations and standardized path coefficients, but it is not 
necessary to use correlations and standardized values, only simpler. In fact, in actual practice, 
estimating structural models using covariances instead of correlations is standard (and better 
practice). 
 
If using covariances, the variances need to be taken into account, however, for each time the 
predictor variable is used. For example, the covariance for Y1 with Y3, or Cov(Y1,Y3), for the 
diagram above, is      1 3 31 21 321 1Cov ,Y Y Var b Var b bY Y     , where b is used for the 

unstandardized regression coefficients.  
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