
Newsom   
Psy 523/623 Structural Equation Modeling, Spring 2025   1 
 

SEM with Nonnormal Continuous Variables 
Definitions and Distinctions 
First, it is important to distinguish between continuous and categorical variables. Continuous variables are 
variables measured on a ratio or interval scale, such as temperature, height, or income in dollars. In 
practice, social scientists usually treat ordinal variables with many categories, such as 5- or 7-point (or 
more) Likert-type scales of agreement, as “continuous.” There is evidence to suggest that treating such 
variables is not likely to result in much practical impact on structural equation modeling results when 
distributions are relatively normal (e.g., Babakus, Ferguson, & Jöreskog, 1987; Dolan, 1994; Hutchinson & 
Olmos, 1998; Johnson & Creech, 1983; Rhemtulla, Brosseau-Laird, & Salvalei, 2012).1 Because the 
maximum likelihood (ML) analysis approach most commonly employed for SEM assumes multivariate 
normality, special data analytic techniques for nonnormal continuous variables should be used if any of the 
continuous variables in the model are nonnormal. Use of unadjusted ML with nonnormal continuous 
variables will negatively impact fit and will tend to underestimate standard errors for parameter tests (i.e., 
Type I errors). The parameter estimates (e.g., loadings, correlations, predictive paths) are largely unaffected 
(Finch, West, & MacKinnon, 1997). 
 
In contrast, we will consider categorical variables to be nominal variables with two (i.e., binary, 
dichotomous) or more categories or ordinal variables with fewer than five values. Examples might include 
categorical variables, such as genetic sex, dead vs. alive, heart attack vs. no heart attack, and race and 
ethnicity categories, or ordinal variables with few response options, such as “never,” “sometimes,” or 
“always” and “poor,” “good,” or “excellent.” The present handout is concerned with nonnormal continuous 
variables, but see the handout “SEM with Categorical Variables” from this class for references and more 
information on categorical variables.  
 
Detection of Multivariate Nonnormality 
Descriptive analysis is a good first step before embarking on any type of inferential analytic approach in 
general. One can begin by examining univariate distributions and skew and kurtosis. West, Finch, & Curran 
(1995) suggest that skewness > 2 and kurtosis > 7 are indicative of moderate or serious nonormality, but 
these should be considered loose guidelines because they are univariate measures. ML assumes 
multivariate normality, which involves the joint distributions of all the variables taken together. If the 
univariate distributions are nonnormal, then the multivariate distribution will be nonnormal, but one can also 
have multivariate nonnormality even when all the individual variables are normally distributed (although 
severe multivariate nonnormality is probably less likely in practice when all of the univariate distributions are 
normal). Tests of multivariate normality are not widely implemented in structural equation modeling 
packages and procedures (although EQS and LISREL are two exceptions). Mardia’s multivariate skewness 
and kurtosis tests are distributed normally (z-test) in very large samples, so could be evaluated against a t, 
z, or chi-square distribution (although remember that significance does not necessarily indicate large 
magnitude).2 Multivariate kurtosis is generally a greater concern than skewness, although the two 
measurements tend to be related. EQS also provides a “normalized estimate” of Mardia’s kappa. Bentler 
and Wu (2002) suggest that a normalized estimate greater than 3 will lead to chi-square and standard error 
biases. It is good to know your data, but a determination of whether or not your data are multivariate normal 
is not needed to decide on which estimation approach you should use, as will be explained below. 
 
Scaled Chi-Square and Robust Standard Errors  
With multivariate nonnormality, it is relatively easy to see concerning levels of bias with mild to moderate 
departures from normality.3 The effect of violating the assumption of nonnormality is that chi-square is too 
large (so too many models are rejected) and standard errors are too small (so significance tests of path 
coefficients will result in Type I error; e.g., Curran, West, & Finch, 1996; Hu, Bentler, & Kano, 1992). The 

 
1 This is consistent with evidence that dependent variables with ordinal variables with 5 to 7 or more values also produce unbiased and efficient 
results with ordinary least squares regression and ANOVA models (see the handout from my Univariate Statistics course called “Levels of 
Measurement and Choosing the Correct Statistical Test” for references and details).  
2 See Lawrence DeCarlo’s (1997) macros for SPSS and SAS to calculate Mardia's multivariate skewness and kurtosis estimates and test them for 
significance (available at http://www.columbia.edu/~ld208/) and the mardiaTest function in the R MVN package. 
3 In terms of the significance tests, the normality is not relevant for exogenous measured variables (I mean that they serve as measured variable 
predictors rather than indicators for a latent exogenous variable, in which they are still dependent variables in the loadings), as there should be no 
impact the standard errors for predictive relationships as is the case with regression analysis.  

http://www.columbia.edu/%7Eld208/
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parameter estimate values are generally not affected by nonnormality (Finch et al., 1997). The scaled chi-
square and “robust” standard errors corrections to ML estimation is a method suggested by Satorra and 
Bentler (1988; 1994).4 It appears to be a good general approach to dealing with nonnormality (Hu, Bentler, 
& Kano, 1992; Curran, West, & Finch, 1996; see Finney & Stefano, 2013 for a more complete review). 
Adjustments are made to the chi-square (and to relative fit indices in some packages, such as Mplus, 
lavaan, and EQS) and standard errors based on a weight matrix derived from an estimate of multivariate 
kurtosis (the parameter estimates themselves are not altered). Mplus and lavaan refer to the Satorra-
Bentler corrections as MLM (for “maximum likelihood mean-adjusted” chi-square; invoked with 
estimator=MLM).5 In the output, the chi-square and the standard errors reported use these adjustments 
when MLM is used. This approach is used when there are no missing values, and estimator=MLR is used 
when there are missing values (see below). Mplus also prints this kurtosis adjustment, referred to as the 
“scaling correction factor” (scf; or as d in Finney & DiStefano, 2013). The scaling correction factor is the 
standard chi-square divided by the scaled chi-square. The ratio is derived from a multivariate kurtosis 
estimate used to adjust the chi-square and standard errors. When data are multivariate normal, this scaling 
correction factor is 1.0, and there is no adjustment to the standard ML chi-square. Greater multivariate 
kurtosis leads to a higher scaling correction factor value (e.g., 1.6 suggests the ML chi-square is 
approximately 60% higher than the scaled chi-square).  
 
Depending on the complexity of the model and the severity of the problem, sample sizes of greater than 250 
may be needed (Hu & Bentler, 1999; Yu & Muthén, 2002). For smaller samples, there is a potential danger 
of overcorrection with this method, and it may be wise to test the model with both the unadjusted ML and 
the Satorra-Bentler corrections to be sure the conclusions do not differ. Otherwise, it may make sense to 
use these adjustments routinely to avoid incorrect conclusions about fit and biases in significance tests.  
 
Bootstrapping is an increasingly popular and promising approach in a number of contexts, and this 
resampling method can also be used to correct fit and standard errors for nonnormality in SEM, but it seems 
that more work is needed to understand how well it performs under various conditions (e.g., specific 
bootstrap approach, sample sizes needed). The simulation work that has been done (Fouladi, 1998; 
Hancock & Nevitt,1999; Nevitt & Hancock, 2001; see Hancock & Liu, 2012 for a more recent discussion) 
suggests that, in terms of bias, a standard “naïve” bootstrap seems to work at least as well as robust 
adjustments to standard errors. However, the Nevitt and Hancock (2001) results suggest that standard 
errors may be erratic for sample size of 200 or less and samples of 500 to 1,000 may be necessary to 
overcome this problem. The complexity of the model should be taken into account as their simulations were 
based on a moderately complex factor model (i.e., smaller sample sizes may be acceptable for simpler 
models). A separate bootstrapping can be done for chi-square fit estimates, known as the Bollen-Stine 
bootstrap approach. The Bollen-Stine chi-square approach seems to adequately control Type I error but 
there is some cost to power (Nevitt & Hancock, 2001). Bootstrapping approaches have now been 
incorporated in most major SEM packages, and it is the only approach to nonnormal continuous variables 
available in Amos. 
 
Alternative Fit Indices 
Relatively little simulation work on alternative fit indices (e.g., RMSEA, IFI, CFI) derived from robust 
approaches to nonnormal continuous variables (Satorra-Bentler robust approach or bootstrapping) is 
currently available, but the Satorra-Bentler scale chi-square appears to outperform the maximum 
unadjusted likelihood chi-square when data are nonnormal (Curran et al., 1996). Thus far, studies suggest 
that at least some alternative fit indices (TLI, CFI, RMSEA) using standard cutoffs (Hu & Bentler, 1999) also 
perform fairly well with the robust approach as long as the Satorra-Bentler scale chi-square for the null is 
also used to compute alternative fit indices and sample size is reasonably large (N = 250 or larger; Nevitt & 
Hancock, 2000; Maydeu-Olivares, Shi, & Rosseel, 2018; Yu & Muthén, 2002). Findings from Maydeu-
Olivares et al. (2018) suggest that the RMSEA may have some erratic values, especially for small sample 
sizes, and the SRMR was largely accurate across the conditions they examined. The user should use some 
caution, because programs do not always recalculate incremental fit indices such as the CFI, TLI, or the IFI 

 
4 The robust standard errors are the same as those proposed by Huber, White, and Eiker and those used with multilevel models and generalized 
estimating equations (Eiker, 1963; Huber, 1967; Liang & Zeger, 1986; White, 1982).  
5 In LISREL and EQS, the Satorra-Bentler corrections are referred to as ML Robust. 
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using the scaled chi-square for the tested model or the null model (I know that Mplus and EQS do use the 
scaled chi-squares in their calculation). Relative fit indices will likely be problematic when scaling 
corrections to the null model are not used (Hu & Bentler, 1999). 
  
Nested Tests 
Nested tests (likelihood ratio test) require special attention for robust estimation. The scaling correction 
factor (scf) must be used to weight the difference (Satorra, 2000; Satorra & Bentler, 2001). The following 
formula gives the adjustment to the difference in chi-square which can be used for significance testing:  
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The scf is equal to the ratio of traditional ML chi-square to the Satorra-Bentler scale chi-square for the 
model, or 2 2/ML SBscf χ χ= . This computation of the weighted difference test can produce negative values and 
Satorra and Bentler (2010) have proposed an alternative computation. Mplus provides correct automated 
nested tests with the DIFFTEST command that can be used for robust methods (as well as categorical 
estimation methods; see Asparouhov & Muthén, 2013; Bryant & Satorra, 2012; Satorra & Bentler, 2010).  
 
Missing Data Estimation with Nonnormal Continuous Variables 
For nonnormal continuous data where some data are missing, a variation on the full maximum likelihood 
method can be used (Yuan & Bentler, 2006). In Mplus and lavaan, this is obtained with estimator = 
MLR.  
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