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Mean Structures 
 
Means are not required and they are not of particular interest for many structural models, but there 
are a few types of models, such as latent growth curve models, that entail hypotheses specifically 
about means. Incorporating means, or "mean structure", in a model has no impact on the model's fit, 
but scaling constraints are needed to ensure that latent factor means are identified. Means for latent 
or measured exogenous variables are called "means", and means for latent or measured endogenous 
variables are called "intercepts". The intercept is always the conditional mean, with its value 
interpreted when all predictors are equal to 0.  

 
Notation 
Inclusion of mean structures in SEM expands the measurement model to include a measurement 
intercept (Sörbom, 1974). Here is the measurement equation for one of the indicators.  

1 1 11 1 1y ν λ η ε= + +  
 
This equation is the same as the measurement model equation we have seen before, except that 
there is a measurement intercept, ν "nu", included. Notice that the equation follows a regression 
equation, which now has an intercept. The intercept represents the predicted value of y1 when the 
latent variable η1 is equal to 0. I like to represent the means with symbols α or ν next to the ellipse or 
rectangle, as in the following diagram: 

 
 
Most authors, however, use a different style of diagram [the reticular action model (RAM) notation: 
McArdle & McDonald, 1984], something like what is shown below: 
 

 
 
Here, the triangle represents the mean structure for both the latent variable and the measured 
variables. The 1 inside the triangle is sometimes given to represent a vector of 1s which is used for 
computation of means in the matrix equations. Means are not usually estimated by default in most 
SEM packages, but they will be added if missing data or mean-adjusted robust estimates are 
requested.  
 
Identification 
Degrees of freedom for the model must now take into account the means estimated, so the formula is 
altered slightly. 
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Here, v ("vee" not "nu" here) is the number of measured variables, and p is number of parameters 
estimated in the model. For a single latent variable with four indicators, like the figure above, the 
number of variance-covariance elements in the obtained matrix is [4(4 + 1)]/2 = 10 and the number of 
observed means is 4, which equals 14 parameters available to be estimated. We count the 
parameters the same way except we must now add 4 means, either four measurement intercepts or 
three measurement intercepts and one factor mean, depending on how we have identified the factor 
mean.    
 
The factor means must be identified, and this is usually done in one of two ways: setting a referent 
intercept to 0 or setting the factor mean to 0 (not both!). Mplus and lavaan set the intercept for the first 
indicator to 0 by default.  
 
An alternative identification strategy was identified by Little, Slegers, and Card (2006) uses a complex 
equality constraint to identify the factor mean. Each loading is constrained to be a function of the other 
loadings and each intercept is constrained to be a function of the other intercepts. The following 
formulas illustrate how this would be done for a factor with three indicators. The constraints need to 
be made as part of the model statements, and not all SEM programs have this capability (in the 
MODEL CONSTRAINT: section in Mplus or using := statements in lavaan).  
 

11 21 313λ λ λ= − −  
 

1 2 30ν ν ν= − −  
Measurement Error 
Measurement error affects estimates of means differently from the way it affects variances. Since 
measurement error is assumed to be random, it has a 0 mean on average. If this is the case, then 
following the classical test theory formula, the mean of the true score and the observed score will be 
equal on average 
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E(.) indicates the expected value (or average), X is the observed score, T is the true score, and e is 
the error. We usually assume the average for measurement error is 0, so this term drops out, and we 
see that the mean of the observed score is the same as the true score. In classical test formula terms, 
measurement error has no impact on the true score, because its expected value E(e) is zero.  
 
Interpretation 
Means and intercepts in structural modeling can be a little difficult to wrap your head around at first. 
The only good way I know to explain their interpretation is to consider them in terms of measurement 
model equations. The expected value for some observed indicator yj can be expressed in terms of the 
measurement intercept, the loading, and the factor mean, αk. 
 

( )j j jk kE y ν λ α= +  
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The intercept then is an adjusted mean for yj.  
 

( )j j jk kE yν λ α= −  
 

Notice that if the factor mean is set to 0, then the observed mean of yj and the measurement intercept 
are equal. Conversely, factor mean is a function of the observed means and the intercept and if the 
first intercept is set to 0 and the first loading is set to 1, then the latent mean, αk, is equal to the 
observed mean of the first indicator y1.  
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What all of this says is that the "latent means" are simply a function of the observed means of the 
indicators. When referent identification (setting the intercept to 0 and the loading to 1) is used, the 
latent mean takes on the value of the first indicator mean.  
 
When effects coding identification is used, the factor means are a weighted average of the indicators, 
and this can be a desirable interpretation for latent means.  
 
Estimation 
To estimate means in the model, the observed matrix to be analyzed must include mean information 
(i.e., fitting the moment matrix), either by including a vector of means when the variance-covariance 
matrix is input or by supplying the program with raw data from which the means can be obtained. A 
special adaptation of maximum likelihood estimation (mean-weighted maximum likelihood) is needed 
to fit models with mean structures (refer to Bentler & Yuan, 2000, and Hayduk, 1987, for an 
explanation of this rationale). 
 
Mean Comparisons and Connection to ANOVA 
Multigroup or longitudinal equality constraints on measured or factor means can be used to obtain 
tests that are equivalent to between-subjects (e.g., Green & Thompson, 2012; Thompson & Green, 
2006) and/or within-subjects (e.g., Newsom, 2015, Chapter 3; Voelkle, 2007) analysis of variance 
(ANOVA). The approach allows for greater flexibility for tests and relaxation of the usual ANOVA 
assumptions. In addition, the same approaches can be used in conjunction with binary and ordinal 
variables to obtain equivalent tests to chi-square and loglinear models (Newsom, 2017). Latent 
variables allow for estimation of measurement error, which increases the precision of these tests 
(Hancock, 2003), and full information maximum likelihood estimation allows for estimation in the 
presence of missing data, both features that offer important advantages to an SEM approach to mean 
comparisons.  
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