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Invariance Tests in Multigroup SEM 

Factor invariance testing investigates the measurement properties of a factor or factors across groups.1 
Often the end goal is psychometric, to assess the equivalence of the factor structure or the quality of the 
items across groups for the aim of determining whether a measure is biased, will translate well, is equally 
interpretable, or is differentially reliable. Many possibilities exist for group comparisons that may be of 
interest to determine whether measurement properties are invariant, including comparisons based on 
race, nationality, sexual orientation, experimental conditions, or educational sectors, to name just a few. 
Invariance also is often seen as an initial step prior to investigating larger multigroup models, with the 
goal of ensuring equivalent measurement across groups to rule out measurement artifacts when 
comparing means or prediction across groups. The general approach to factorial invariance tests is to 
use likelihood ratio tests that compare nested models in which one model in which that set of parameters 
(e.g., loadings) is constrained to be equal across groups to another model in which that set of 
parameters is allowed to be estimated freely and separately across groups. A non-significant test 
established equality across groups, and thus, some aspect of factorial invariance.  
 
Factorial invariance testing is a complex and detailed topic that requires more space for discussion than 
is available here. The issues discussed in this handout only scratch the surface of the relevant issues for 
multigroup SEM. Comparisons with categorical indicators (and threshold constraints), comparisons with 
nonnormal and missing data, and comparisons across more than two groups are applications that are 
relatively simple to employ drawing from other content discussed in the course. But given time 
limitations, I will not be able to go into much detail on these applications. Some of the issues have not 
been thoroughly considered in the literature yet, but many of them are discussed elsewhere (Millsap, 
2011; Widaman & Olivera-Aguilar, 2023). 
 
There are a plethora of systems and terminologies for classifying different aspects of invariance, which is 
often a great source of confusion for a complex topic to begin with. Essentially, all systems boil down to 
comparison of different sorts of parameters across groups—loadings (Λ), measurement errors (Θε), 
factor variances and covariances (ψ), factor means (α), and measurement intercepts (ν). Although far 
from universally used, Meredith’s (1993) classification terminology for these different sets of parameters 
is perhaps most widely used. He used weak factorial invariance to refer to establishing that loadings are 
equal across groups, strong factorial invariance to refer to establishing that loadings and measurement 
intercepts are equal across groups, strict factorial invariance to refer to establish that loadings, 
measurement intercepts, and measure residual variances are equal across groups, and structural 
invariance to refer to establishing that loadings, measurement intercepts, measurement residual 
variances, factor variances, and factor means are equal across groups. The figure on the next page is a 
visual illustration of each of the definitions.  
 
The question often arises about which level of factorial invariance is needed. The answer depends on 
what analyses are planned for the measure or what the measure will be used for in the future. To 
demonstrate that a measure has equal reliability across groups, one would need to establish that the 
loadings and the measurement residual variances are equal across groups. This goal is relevant to the 
extent that the measure is likely to be used as a composite index in future research. To the extent that 
either of these parameters differ and, hence, the reliability of the measure differs across groups, 
differences in prediction (e.g., interactions, multigroup models) across groups could be an artifact of 
differences in measurement reliability. If subsequent analyses use the measure as a latent variable, 
differences in measurement residual variances will not impact inferences about group differences in 
prediction as long as the loading are equal across groups. If subsequent analyses are to involve mean 
comparisons, intercepts should be equal across groups to avoid conclusions about group differences 
unduly influenced an individual or subset of items. Factor variance differences may lead to problems with 
heterogeneity of variance assumptions but may have no severe consequences for many structural 
models in which the assumption can be relaxed. Factor mean differences are typically involved in the 
substantive hypotheses when means are being compared, so do not seem like a psychometric concern.  

 
1 Longitudinal invariance testing is a related topic that shares many of the same rationales, strategies, and issues. See Bontempo and Hofer 
(2007), Millsap and Cham (2011), and Newsom (2024, Chapter 2) for introductions.  
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Illustration using Meredith’s (1993) Terminology 
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Note: Grayed elements represent equality constraints across groups. η is the factor, α is the factor mean, ψ is the factor variance, ν 
(“nu”) is the loading intercept, λ is the factor loading, θε is the measurement residual variance (I use the matrix element symbol instead 
of just ε in my figure to emphasize that the equality test is a comparison of variances). 
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One Suggested Process 
One source of debate or inconsistency in the literature involves what the best process for conducting tests 
should be. There may be more than one “good” process for conducting variances tests. The general strategy 
illustrated in the flow chart below follows what Stark and colleagues (Stark, Chernyshenko, & Drasgow, 2006) 
call a free baseline approach, which makes sense to me. The logic of this approach is that if the model does 
not fit when there are no cross-group constraints placed on it, rejection or modification of the general model is 
required. In contrast, one can propose a constrained baseline approach in which all parameters are 
constrained across groups first (which is the same as a single group model). Neither approach is right or wrong 
per se, but they have different rationales and strengths.  
 
Following the free baseline approach, comparisons should be made between a more constrained model and 
the baseline model (Bentler, 2000). An omnibus approach is usually used in which classes of parameters (e.g., 
loadings) are constrained simultaneously. The general overall idea is to establish measurement equivalence 
before comparing predictive paths across groups to avoid confounding group differences in measurement 
properties with substantive differences in means or predictive paths across groups. As long as SEM is used to 
assess differences in prediction across groups (and not mean comparisons), weak invariance across groups 
should be sufficient, because the differences in measurement residuals across groups should not affect 
relations among latent variables as long as the measurement residual variances are allowed to freely vary 
across groups. (And, in fact, constraining measurement residuals to be equal across groups when they are 
truly not equal will lead to biases in the predictive paths). On the other hand, invariance of loadings and 
measurement residual variances will be required if the goal is to compare groups in subsequent analyses using 
a composite index of the items, because group differences in the amount of measurement error across groups 
can impact the results (Millsap & Kwok, 2004). Measurement intercept invariance should be established if the 
goal is to compare means across groups, but because factor means are a function of item intercepts as well as 
item loadings, both loadings and intercepts (strong factorial invariance) should be invariant to fairly compare 
factor means and loadings, intercepts, and measurement residual variances (strict factorial invariance) would 
be need to compare means with a composite of the items.  
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Finding the Specific Source of Measurement Invariance 
It is important to realize that testing only a subset of loadings or intercepts for measurement invariance 
(sometimes “partial invariance”; Byrne, Shavelson, & Muthen, 1989) can be problematic, because there is an 
interdependence of loadings and factor variances (or similarly factor intercepts and factor means). This makes 
sense if you remember that the factor variance is altered when a different indicator is chosen as the referent. 
For testing factorial invariance on only a subset of loadings (or other parameters) for a factor, special 
procedures are needed to be ensure that the choice of referent indicator does not obscure the correct 
identification of the specific indicators that differ (see Cheung & Lau, 2012; Yoon & Millsap, 2007). Cheung and 
Lau propose a complex but logical system of equal constraints using ratios of loadings. The method requires 
software that allows for complex equality constraints to be defined when the model is tested.   
 
Means  
Mean comparisons (of factors, α, or intercepts, ν) may not always be of interest, but when they are important, 
factorial invariance of the measurement intercepts should be examined. Two cases in which intercept 
invariance should be established: 1) bias may be introduced because groups are combined or assumed 
equivalent in later analyses, and 2) mean differences between groups are of substantive interest (analogous to 
t-test or ANOVA comparisons). In other cases, in which the researcher is interested in examining predictive 
differences between groups, one would not necessarily assume that group differences on the mean of an 
independent or dependent variable would affect associations with other variables within a group. Loadings 
should always be constrained equal across groups when comparing means, because factor means are a 
function of the measurement intercept and the loading (see Newsom, 2024, Chapter 1).  
 
Multigroup SEMs with Multiple Factors 
Multifactor models present additional complications. Structural relations between a set of predictors and an 
outcome will depend on correlations among the predictors, for example. So, in order to meaningfully interpret 
differences in prediction across groups, one would normally want to assume equivalence in the correlations 
among the predictors. Finally, with large sample sizes, significant differences may be found for very small 
magnitude differences, and the researcher needs to decide which differences are important. Calculating 
magnitude of the difference is encouraged (Cheung & Rensvold, 2002; Fan & Sivo, 2010). As outlined in the 
handout Nested Models, Model Modifications, and Correlated Errors, one can use relative fit indices such as 
the CFI or McDonald's noncentrality index or Cohen's w to evaluate how large the chi-square difference is. As 
a separate matter, the mean differences across groups can be evaluated in terms of effects size as well, using 
Cohen's standardized effect size d, for instance (Hancock, 2001).  
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