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Second-Order Latent Growth Curve Models 
Overview 
Second-order growth curve models include multiple indicators of a latent variable at each time point (McArdle, 
1988; Tisak & Meredith, 1990).  They are sometimes referred to as multiple indicator growth curve models, 
curve-of-factors models, or latent variable growth curve models. 
 
The second-order intercept and slope factors 
then model change in these variables and are 
specified much like they are with the more 
common first-order growth curve models, with 
intercept and slope factor means and variances 
estimated. 
 
The second-order latent growth curve models 
require attention to several specification details 
(see below and Sayer & Cumsille, 2001 for more 
detail).  Scaling constraints are needed for 
measurement intercepts of each first order latent 
variable (i.e., ν are set to zero for one loading of 
η1, η2, and η3).   
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Constant variance across time points can be assumed by constraining the residual disturbances (ζ1, ζ2, 
ζ3) to be equal.  This assumption can be tested using a nested chi-square test. Autocorrelations of 
measurement errors over time may also be desirable. 

The estimation of latent variables at each time point, which separately estimates measurement error 
(specific variance), will not impact mean slope estimates, because means are unbiased by measurement error.  
The second-order growth curve model should increase growth curve reliability and therefore increase statistical 
precision and increase power, however (von Oertzen, Hertzog, Lindenberger, & Ghisletta, 2010; Wänström, 
2009). 
     
Model Equations 

An intercept and slope factor variance are specified for the second-order factors, with loadings set to 
1.0 for the intercept factor, ηint, and slope factor, ηslope, loadings to unit increments (frequently, 0, 1, 2, 3…). 

1ti int i slope tiη η λ η ζ= + +  
 

Each factor estimates a mean, α, and deviation, ζ.  αint  represents the average baseline value if time 
codes of 0, 1, 2, 3… are used for growth factor loadings, and αslope represents the average slope.   
 

int int intη α ζ= +  
slope slope slopeη α ζ= +  

 
The first-order factors at each time point, t, are defined by measurement intercept values for each indicator, νjt, 
factor loadings, Λjt, a latent variable, ηti, and indicator-specific variance, εjti where the subscript j refers to 
particular indicator of the first-order factor. 

jti jt jt ti jtiY ν η ε= + Λ +  
Model Specification Details 

Identification. The most common method of identifying latent variables at each time point is to use a 
referent indicator for the first-order latent variable at each time point.  Often the default in software programs, 
one loading, λjti = 1.0 and one measurement intercept, νjti = 0 for the first order factor are set (Bollen & Curran, 
2006; Sayer & Cumsille, 2001), but the remaining intercepts can be freely estimated.  The referent for the 
loading and the intercept should be the same and should be consistent across time points.  The scaling of the 
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factor mean at each time point is based on the observed mean of the referent measurement intercept, so the 
mean and variance of growth parameters will be a function of the observed mean of the chosen referent 
indicator variable.   

An alternative identification approach that has been suggested is to standardize the factor mean and 
variance (α1 = 0 and ψ11 = 1) at the first time point (Chan, 1988;  Widaman & Reise, 1997).  The advantage of 
this approach is that a single indicator does not have to be chosen as a referent arbitrarily.  Measurement 
invariance can be used with this method.  

The effects coding approach to identification of Little, Slegers, and Card (2006) has several advantages 
over the aforementioned approaches. This approach places constraints on the set of loadings and 
measurement intercepts for each factor, avoiding the arbitrary choice of one referent over another. The 
approach can be used in conjunction with longitudinal measurement constraints as well. An appealing 
advantage is that the means at each time point are defined as a weighted average of the indicators at each 
time point rather than based on a single referent indicator mean. It also allows the researcher to retain the 
original metric of the measured variables rather than scaling each time point as difference values from the first 
time point, as with the single occasion identification approach. Example code for a second-order growth model 
using Mplus and lavaan are posted online at www.longitudinalsem.com (ex7-6e.inp, ex7-6e.R).  

Longitudinal measurement invariance.  The second-order growth curve framework allows the 
researcher to examine factorial invariance over time (Bontempo & Hofer, 2007; Newsom, 2015), which is a key 
advantage  To the extent that measurement properties change over time, growth estimates are likely to be 
biased.  As with between group factorial tests, one can distinguish between less and more strict invariance 
assumptions that include measurement intercepts, loadings, and measurement errors.  Because mean 
estimates of latent slopes and intercepts are of interest and depend on values of measurement intercepts, 
invariance tests of measurement intercepts become more important than in models without interest in means 
(strict invariance).  If invariance is established, loadings and intercepts can be set equal.  Invariance tests may 
be affected by the choice of referent variable, so careful strategies for testing are needed when the referent 
identification approach is used (Ferrer, Balluerka, & Widaman, 2008).   

Homogeneneous variance across time points. The researcher can set the disturbances associated 
with the first order factors to be equal over time to impose homogeneity of error variance, an assumption that 
can be tested for significance.  

Correlated measurement residuals. Correlated errors of same items over time are a reasonable 
addition to these models and should improve estimates of the variance and covariances of the growth factors.  
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