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Latent Growth Curve Models 
Meredith and Tisak (1984,1990) are generally credited with the inception of modern latent growth curve 
analysis by formalizing earlier work on exploratory factor analysis of growth (e.g., Baker, 1954; Rao, 1958; 
Tucker, 1958). They proposed latent variables with repeated measures as indicators, with and without special 
constraints on the loadings, in order to account for change over time. Latent growth curve models exploit the 
measurement model to estimate the variable of interest as some function of time. 
 
Latent growth curve models provide information about the absolute level change at the individual and the 
sample average level. Conceptually, the basic building block is an individual regression where a score at each 
time point is regressed on time. The time variable can be represented by any age or date related variable, but 
is most commonly represented arbitrary codes beginning with 0 and ending with the final time point, T (e.g., 0, 
1, 2, 3, … T). 
 
The figure below illustrates a hypothetical slope for an individual case. 
 

 
We could write this within-case regression equation as  
 

0 1ti i i ti tiy x rβ β= + +  
 
The intercept for this special equation represents the predicted value of yti when the time variable equals 0, 
which would be the baseline score. The slope represents the change in yti for each increment in time. You can 
also think about the slope as the average difference between time points.  
 
If we were to imagine taking the intercept and slopes from a set of these individual regressions from all the 
cases in the data set, we could construct two other simple regression equations. Below are two such 
equations, one with the intercepts, β0, serving as the outcome, and one with slopes, β1, serving as the 
outcome. To start with a simple form, neither equation has any predictors.  
 

0 00 0i iuβ γ= +  

1 10 1i iuβ γ= +  
 
Without any predictors, the intercept for a regression model is just the average. The intercept for the first 
equation, γ00, represents the average of the intercepts, or the average baseline score. The intercept in the 
second equation, γ10, represents the average of the slopes.   
 
The variance of the residuals Var(u0i) and Var(u1i) represent variances in the baseline scores across individuals 
and variances in the slopes across individuals. These variances are often referred to as "random effects", 
whereas the average intercept and slope parameters are called "fixed effects". Because the model has both 
random and fixed effects, the term "mixed effects" is sometimes used. Growth curve models are generally 
portrayed as having a fundamental advantage over conventional repeated measures ANOVA, because 
individual differences in change or growth can be examined 
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If we substitute the second set of equations into the first, we get a single "multilevel" equation. 
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After the terms are rearranged, we can reconceptualize this equation as just a special regression model, with 
γ00 as the intercept, γ10 as the slope, and three types of residuals. One method of doing this analysis is to 
create separate records for each time point, sometimes called the "long data" format, which is the multilevel 
regression approach to growth curves. The SEM approach, however, uses a standard repeated measures data 
structure (“wide data” format). 
 
For latent growth curves, the equivalent model can be estimated in SEM (Chou, Bentler, & Pentz, 1998; 
McNeish & Matta, 2018), but it requires exploiting the factor model in a special way to obtain intercept and 
slope means and variances.  

 
 
The growth curve equations given above can be stated using our SEM notation. 
 

0 0 1 1ti t i t i tiy λ η λ η ε= + +  
 

0 0 0i iη α ζ= +  

1 1 1i iη α ζ= +  
 
The symbols α0 and α1 are the factor means for the intercept factor, η0, and slope factor. η1, respectively. For 
the intercept interpretation to work out as a representation of baseline scores, we will always want to include 
the covariance between the intercept factor and the slope factor, Cov(η0i,η1i) = ψ01. It can be useful to interpret 
the standardized value, the intercept-slope correlation. 
 
The correlation between the intercept and slope factors can be complicated to interpret. Simply put, the 
correlation represents the association between an individual's score at baseline (assuming the common coding 
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scheme for the slope loadings) and change over time. A positive correlation indicates higher baseline scores 
are associated with a higher slope value. A "higher slope value" is a less negative slope or a larger positive 
slope. Plotting the individual slopes from an analysis can be helpful. Here are a few hypothetical examples that 
might be helpful to examine (From Newsom, 2024, p. 205).  
 
 

 
Time Coding 
By far, 0, 1, 2, 3, ….T -1 is the most commonly used coding scheme for the slope factor loadings, although other 
coding schemes are certainly possible. In some instances, a researcher may be interested in an intercept that 
can be interpreted as the middle time point (e.g., λt1 = -2, -1, 0, 1, 2) or the last time point (e.g., λt1 = -4, -3, -2, -1, 
0). Other time variables are certainly acceptable. Age or grade can be used, for example. Be aware, however, 
that the interpretation of the intercept is for the predicted value of y when the time score equals 0. So, using 
age as the time variable gives the predicted score at birth. This may make sense in some cases but in many 
cases it will not make sense. Unequal spacing of time is another issue to be aware of. If there is a two-year 
gap between the third and four wave of an otherwise annual survey, the codes should correctly correspond 
(e.g., 0, 1, 2, 4, 5).1 
 
Intraclass Correlation Coefficient 
The intraclass correlation coefficient, which gauges the proportion of between case and within case variance 
(between-person vs. within-person, if you like), is often used to describe how much scores are clustered within 
cases. It is not provided by any SEM programs, but is easily computed. 
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The variance estimate of the intercept factor (representing baseline score variability if common time scores are 
used) is given by ψ00, and the measurement error variance is given by θ(tt). In this case, the measurement error 

 
1 Individually varying time points are possible in Mplus (see Newsom, 2024, Chapter 7, for a discussion), but otherwise are more conveniently estimated 
using the multilevel regression approach to growth curves.  
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variances is constrained to be equal across time points (homogeneity of error variance) to obtain a single 
value, but an average of the freely estimated values might be a reasonable substitute.  
  
Reliability 
A closely related calculation is the reliability of the of the parameter estimate. The general concept is higher 
reliability reflects greater precision of the estimate, and parameter estimates have higher reliability, there will 
be greater statistical power. This can be calculated for the intercept or the slope. There are a few different 
approaches to assessing reliability, and I give only one of the several possible here (Raudenbush & Bryk, 
1986; 2002). 
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In the equation, ψ11 is the variance estimate of the slope factor and T is the number of time points. I discuss a 
couple of other possible proposed computations in the text. Notice that higher reliability occurs when the more 
variability of slopes between cases is large relative to the variability within cases and when there are more time 
points. Lower reliability (particularly for slopes) is associated with low power as well as estimation problems. 
 
Model fit 
Poor fit of a latent growth curve does not reflect the degree of change over time and it does not even 
necessarily reflect the validity of the linear form. The lack of fit is a function of the average deviation of 
observed values from the linear slope as illustrated in the individual growth figure above. Variance of the 
measurement residuals in this context is due to several factors (Bollen, 2007; Wu, West, & Taylor, 2009), 
including random measurement error in the observed variable, occasion-specific systematic variance, 
occasion-specific nonsystematic variance, and the correctness of the functional form (i.e., linear in the present 
model).  
 
Inclusion of Covariates 
This handout has focused on unconditional growth curve models in which the intercept and slope factors are 
not predicted by (conditioned on) other variables. There are two general types of predictors that might be 
included, those that are measured at the person level, so called time-invariant covariates, and those that are 
measure at each time point, called time-varying covariates. See the subsequent handout “Covariates with 
Latent Growth Curve Models” and Newsom (2015, Chapter 7) from this class for more details.  
 
Inclusion of Latent Growth Curve Factors in Larger Models 
In addition to intercept and slope factors, in SEM, latent growth curve factors can serve as predictors or 
mediators in larger models (see Cheong, MacKinnon, & Khoo, 2003; Selig & Preacher, 2009; von Soest & 
Hagtvet, 2011), which are applications not possible with the multilevel regression approach to growth curves.  
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