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Second-Order Latent Growth Curve Models 
Overview 
Second-order growth curve models include multiple indicators of a latent variable at each time point (McArdle, 
1988; Tisak & Meredith, 1990). They are sometimes referred to as multiple indicator growth curve models, 
curve-of-factors models, or latent variable growth curve models. The estimation of latent variables at each time 
point, which separately estimates measurement error (specific variance), will not impact mean slope estimates, 
because means are unbiased by measurement error. Having multiple indicators at each time point, however, 
will increase growth curve reliability and therefore increase statistical precision and increase power, (von 
Oertzen, Hertzog, Lindenberger, & Ghisletta, 2010; Wänström, 2009). 
 
The second-order intercept and slope factors 
then model change in these variables and are 
specified much like they are with the more 
common first-order growth curve models, with 
intercept and slope factor means and variances 
estimated. 

The first-order factors require attention to 
several specification details (see below). Scaling 
constraints can make a difference in the 
interpretation of the factor means so effect 
coding (Little, Slegers, & Card, 2006) is 
recommended so that the factor means at each 
time point are a weighted function of all of the 
indicators (Newsom, 2024). It is important to 
establish measurement invariance, including 
loadings and measurement intercepts (Ferrer, 
Balluerka, & Widaman, 2008).    

 

 
Several variations on the basic specification are possible. Correlations among measurement residuals over 
time are recommended to improve the estimation of the intercept-slope covariance (Newsom, 2024). Constant 
variance across time points can be assumed by constraining the variances of the residual disturbances 
associated with the first order factors (ζ1, ζ2, ζ3) to be equal if desired and equivalence of disturbance 
variances can be tested using a likelihood ratio nested test.  
   
Model Equations 
An intercept and slope factor variance are specified for the second-order factors, with loadings set to 1.0 for 
the intercept factor, ηint, and slope factor, ηslope, loadings to unit increments (frequently, 0, 1, 2, 3…). 

 
1ti int i slope tiη η λ η ζ= + +  
 

Each factor estimates a mean, α, and deviation, ζ.  αint  represents the average baseline value if time codes of 
0, 1, 2, 3… are used for growth factor loadings, and αslope represents the average slope.  
 

int int intη α ζ= +  
slope slope slopeη α ζ= +  

 
The first-order factors at each time point, t, are defined by measurement intercept values for each indicator, νjt, 
factor loadings, Λjt, a latent variable, ηti, and indicator-specific variance, εjti where the subscript j refers to 
particular indicator of the first-order factor. 
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Model Specification Details 
Identification. The most common method of identifying latent variables at each time point is to use a referent 
indicator for the first-order latent variable at each time point. Often the default in software programs, one 
loading, λjti = 1.0 and one measurement intercept, νjti = 0 for the first order factor are set (Bollen & Curran, 
2006; Sayer & Cumsille, 2001), but the remaining intercepts can be freely estimated. The referent for the 
loading and the intercept should be the same and should be consistent across time points. The scaling of the 
factor mean at each time point is based on the observed mean of the referent measurement intercept, so the 
mean and variance of growth parameters will be a function of the observed mean of the chosen referent 
indicator variable.  
 
An alternative identification approach that has been suggested is to standardize the factor mean and variance 
(α1 = 0 and ψ11 = 1) at the first time point (Chan, 1988; Widaman & Reise, 1997). The advantage of this 
approach is that a single indicator does not have to be chosen as a referent arbitrarily, but the means 
represent a difference from the referent time point which may be less intuitive. Measurement invariance 
constraints are needed with this method.  
 
The effects coding approach to identification of Little, Slegers, and Card (2006) has several advantages over 
the aforementioned approaches. This approach places constraints on the set of loadings and measurement 
intercepts for each factor, avoiding the arbitrary choice of one referent over another. The approach can be 
used in conjunction with longitudinal measurement constraints as well. An appealing advantage is that the 
means at each time point are defined as a weighted average of the indicators at each time point rather than 
based on a single referent indicator mean. It also allows the researcher to retain the original metric of the 
measured variables rather than scaling each time point as difference values from the first time point, as with 
the single occasion identification approach. Example code for a second-order growth model using Mplus and 
lavaan are posted online at www.longitudinalsem.com (example 7-6) illustrating each of these specifications 
(see ex7-6c.inp, ex7-6c.R for the effect coding).  
 
Longitudinal measurement invariance. The second-order growth curve framework allows the researcher to 
examine factorial invariance over time (Bontempo & Hofer, 2007; Newsom, 2024), which is a key advantage. 
To the extent that measurement properties change over time, growth estimates are likely to be biased. As with 
between group factorial tests, one can distinguish between less and more strict invariance assumptions that 
include measurement intercepts, loadings, and measurement errors. Because mean estimates of latent slopes 
and intercepts are of interest and depend on values of measurement intercepts, invariance tests of 
measurement intercepts become more important than in models without interest in means (strict invariance). 
Because factor means are a weighted function of the loadings, loadings much also be invariant over time. If 
invariance is established, loadings and intercepts can be set equal and the research can proceed with 
estimating the growth model. When they are not invariant, the choice of referent (or, more generally, the factor 
scaling approach) may potentially affect the results and conclusions (Ferrer, Balluerka, & Widaman, 2008).  If 
invariance fails, changes in the measure may be needed or the researcher may need to argue that the 
invariances effects are trivial and will lead to minimal bias.  
 
Homogeneneous variance across time points. The researcher can set the disturbances associated with the 
first order factors (ζ1, ζ2, ζ3) to be equal over time to impose homogeneity of error variance, an assumption that 
can be tested for significance. Autocorrelation structures also can potentially be used by estimating 
correlations among the first-order factor disturbances across consecutive time points (lag 1) or other patterns, 
although these can potentially cause convergence issues, particularly with fewer time points.  
 
Correlated measurement residuals. Correlated errors of same items over time are commonly used and are a 
reasonable addition to these models. Their inclusion should improve estimates of the variance and covariances 
of the growth factors.  
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