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Covariates with Latent Growth Curve Models 
There are two ways that predictors might be included in latent growth curve models—time-invariant 
covariates and time-varying covariates. Despite the term “time invariant” a time-invariant predictor does not 
necessarily have to be a variable that is truly unchanging. It may be just a baseline measurement or just the 
single measurement that happens to be available for each person. Time-varying covariates, however, do 
need to be measured at individual time points. See the handout “Latent Growth Curve Models” for an 
introduction to the basics of latent growth curves. 
 
Time Invariant Covariates 
One or more predictors of the intercept and slope factors can be included in the model. In such models, the 
factor means, α0 and α1, are conditional on the predictor(s), and so they are referred to as “intercepts.”  
 

0 0 01 0i i ixη α β ζ= + +  

1 1 11 1i i ixη α β ζ= + +  
 
The intercept value for η0 thus represents the average value of the outcome, usually at baseline, when the 
predictor, x1, equals 0. The intercept value for η1 is the average change in the outcome when x1 equals 0. 
Because the 0 value for the predictor may not be meaningful (e.g., when age is equal to 0 or a 1-to-7 Likert 
scale is equal to 0), it is commonly recommended that the covariates be centered. Even with binary 
predictors, it may make sense to center the predictor, so that the intercept is the mean for both groups (e.g., 
unmarried, married), not just the 0 group.   
 

 
 
The path coefficients, β01 and β11 above, represent the relationship to the baseline value and the change in 
the outcome, respectively. For example, if the model is of self-esteem predicting growth factors for 
elementary student prosocial behaviors, then β01 represents the effect of self-esteem on initial values of 
prosocial behavior, say at kindergarten. The β11 coefficient represents the relationship between self-esteem 
and increases in prosocial behavior over time.  
 
When the β11 is significant, there is a cross-level interaction in which changes in the outcome (prosocial 
behavior) depend on the value of the predictor (self-esteem). We can see this if we expand the above 
equations. 
 

( ) ( )0 0 01 0 1 1 11 1ti t i i t i i tiy x xλ α β ζ λ α β ζ ε= + + + + + + ,  
 

substituting t for λt1 and dropping λt0, we have 
 

( )0 01 1 11 0 1ti i i i i tiy x t x t tα β α β ζ ζ ε= + + + + + +  
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Because the intercept loadings equal 1 they can be dropped out. I replace the growth curve loadings λti with 
t, the time variable (usually with values 0, 1, 2, 3…), to more easily see that the coefficient β11 is the 
coefficient for interaction effect between x1 and t (β01 is the coefficient for the main effect for x1 and α1 is the 
coefficient main effect of time).   
 
If the cross-level interaction is significant, simple slopes (or conditional effects), representing the effect of 
time (or changes in the outcome over time) for certain values of x1 can be derived, tested for significance, 
and plotted, to probe the nature of the interaction (Curran, Bauer, Willoughby, 2004, 2006). The simple 
slope is then 0 1ˆtiy tα α= +  for a particular value of x1 representing the change in the outcome when x1 is 
equal to that value. Although any chosen values of x1 can be used, most commonly researchers use -1 SD 
below the mean, the mean, and +1 SD above the mean. Model constraints can be used to program the 
tests and plots just as with measured variable or latent variable interactions (see the “Simple Slopes for 
Continuous Measured and Latent Variable Interactions” handout from this class). 

 
Time-Varying Covariates 
Time-varying covariates are predictors of the outcome at each time point. I like to think of time-invariant 
predictors as variables used to explain variation in baseline values and variation in growth across 
individuals and time-varying predictors as control variables (or covariates) that give estimates of the growth 
parameters after removing the changes in the time-varying predictor. For example, if the growth model was 
of depression with health used as a time-varying covariate, then the slope would represent changes in 
depression after adjusting for the effects of health at each measurement time point. The default in SEM 
programs is for each time-specific effect of the covariate (β11, β22, β33, and β44 below) are estimated 
separately. In multilevel regression models, these values would be equal across time (i.e., one effect for the 
time-varying covariate is estimated across all time points). Those constraints could be imposed in SEM and 
could be tested for equality using a likelihood ratio test but they are not typically estimated as equal by 
default.  

 
 
Centering is also important for time-varying covariates, so that the intercept and slope factor means are not 
estimated for the value of xt when equal to 0 (except in some case where that may be desired). There are 
several possible options for centering, however. Centering each time point according to the sample mean 
for that time point would remove changes across time in the covariate, so it may make more sense to center 
using the baseline mean ( 1ix ) for each individual (centering within context or within person) or the baseline 
mean for the full sample ( 1x , grand mean centering). The decision between these two options is not always 
simple, however (see Enders & Tofighi, 2007 and Hoffman, 2015) for a detailed discussions). 
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