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Some Clarifications and Recommendations on Fit Indices 
 
Many reviews of SEM fit indices (e.g., West, Taylor, & Wu, 2012; Hu & Bentler, 1999; Kline, 2016) 
distinguish between types of fit indices, sometimes using terms such as absolute fit indices, relative (or 
comparative) fit indices, parsimony fit indices, and those based on the noncentrality parameter (for good 
overviews and computational details for fit indices, see also Hu & Bentler, 1998; Maruyama, 1998; 
Tanaka,1993). West and colleagues (West, Wu, McNeish, & Savord, 2023) group several of these into 
“practical fit indices.” Below I attempt to provide a simplified overview of some of the better-known SEM 
fit indices to help make sense of the dizzying array of model fit measures. I include a considerable 
number of my own professional opinions, which I know that not all SEM experts necessarily agree with, 
but I believe the views I present are shared by most SEM users and are a reasonable representation of 
the current standards of practice.  
 
Absolute Fit Indices (χ2, GFI, AGFI, Hoelter’s CN, AIC, BIC, ECVI, RMR, SRMR)  
Absolute fit indices do not use an alternative model as a base for comparison. They are simply derived 
from the fit of the obtained and implied covariance matrices and the ML minimization function. Chi-
square (χ2, sometimes referred to as T) is the original fit index for structural models because it is derived 
directly from the fit function [FML(N-1)]. High values indicate poor fit, and a standard significance test of 
chi-square with the degrees of freedom for the model can be used to determine that there is a significant 
discrepancy between the hypothesized model and the data. Because chi-square is the original fit index 
and because it is the basis for most other fit indices, it is routinely reported in all SEM results sections. 
 
In practice, however, chi-square in this context is not considered to be a very useful fit index by most 
researchers,1 because it is affected by several factors: (1) chi-square is affected by sample size—larger 
samples produce larger chi-squares that are significant even with very small discrepancies between 
implied and obtained covariance matrices (perhaps accurate but trivial in some instances). On the other 
hand, small samples may be too likely to accept poor models (Type II error). Based on my experience, it 
is difficult to get a nonsignificant chi-square (indicative of good fit) when samples sizes are much over 
200 or so; (2) chi-square is affected by model size, in which models with more variables tend to have 
larger chi-square values; (3) chi-square is affected by the distribution of variables. Highly skewed and 
kurtotic variables increase chi-square values. This has to do with the multivariate normality assumption 
that we will discuss later in the class (and is often addressable); (4) There may be some lack of fit 
because of omitted variables. Omission of variables may make it difficult to reproduce the correlation (or 
covariance) matrix perfectly. See West and colleagues (2012) for a more thorough background on the 
limitations of chi-square and key references. 
 
There are several other indices that fall into the category of absolute indices, including the Goodness-of-
fit index (GFI; and Steiger’s, 1989, modified version known as gamma-hat or γ̂ ), the adjusted goodness 
of fit index (AGFI), the χ2/df ratio (sometimes called "normed chi-square"), Hoelter’s CN (“critical N”), 
Akaike’s Information Criterion (AIC), the Bayesian Information Criterion (BIC), the Expected Cross-
validation Index (ECVI), the root mean square residual (RMR), and the standardized root mean square 
residual (SRMR). Most of these indices, with the possible exception of the SRMR, have similar problems 
to those of the chi-square, because they are simple transformations of chi-square. As one example, the 
AIC (as given by Tanaka, 1993) is just 2 2( )pχ + , where p is the number of free parameters (the number 
counted in calculating df).  

 
1 A small minority of statisticians hold strongly to a philosophy that significant chi-square values indicate unacceptable fit and that a model with a 
significant chi-square is incorrect and requires correction or should be discarded (see Hayduk, Cummings, Boadu, Pazderka-Robinson, & 
Boulianne, 2007, for an introduction to this viewpoint). Thus, the argument is that relative fit indices are not valuable in research and should not 
be used. The vast majority of researchers, statistical researchers or applied researchers, do not appear to hold this view, however, because 
nearly all published articles report alternative measures of fit. Most researchers appear to consider models with departures from perfect fit that 
are small in magnitude (e.g., high relative fit indices) to remain tenable and of utility. 
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Relative Fit Indices (IFI, TLI, NFI) 
Relative fit indices compare a chi-square for the model tested to one from a so-called null model (also 
called a “baseline” model or “independence” model). The null model is a model in which all measured 
variables are uncorrelated (there are no latent variables). The null model will probably always have a 
very large chi-square (poor fit). Although other baseline models could be used, this is not often seen in 
practice.2 There are several relative fit indices, including Bollen’s Incremental Fit Index (IFI, also called 
BL89 or ∆2), the Tucker-Lewis Index [TLI, Bentler-Bonett Nonnormed Fit Index (NNFI or BBNFI), or ρ2], 
and the Bentler-Bonett Normed Fit Index (NFI).3 Most of these fit indices are computed by using ratios of 
the model chi-square and the null model chi-square, taking into account their degrees of freedom. All of 
these indices have values that range between approximately 0 and 1.0. Some indices are “normed” so 
that their values cannot be below 0 or above 1 (e.g., NFI, CFI described below). Others are considered 
“nonnormed” because, on occasion, they may be larger than 1 or slightly below 0 (e.g., TLI, IFI). An 
earlier convention used above .90 as a cutoff for good fitting models, but there seems to be some 
consensus now that this value should be increased to approximately .95 (based largely on Hu & Bentler, 
1999). 
 
Parsimonious Fit Indices (PGFI, PNFI, PNFI2, PCFI) 
Parsimony-corrected fit indices are relative fit indices that are adjustments to most of the fit indices 
mentioned above. The adjustments are to penalize models that are less parsimonious, so that simpler 
theoretical processes are favored over more complex ones. The more complex the model, the lower the 
fit index. Parsimonious fit indices include PGFI (based on the GFI), PNFI (based on the NFI), PNFI2 
(based on Bollen’s IFI), PCFI (based on the CFI mentioned below). Mulaik and colleagues (1989) 
developed a number of these. Although many researchers believe that parsimony adjustments are 
important, there is some debate about whether or not they are appropriate. I see parsimony-adjusted 
relative fit indices used very infrequently in the literature, so I suspect most researchers do not favor 
them. My own perspective is that researchers should evaluate model fit independent of parsimony 
considerations, but evaluate alternative theories favoring parsimony. With such an approach, we would 
not penalize models for having more parameters, but if simpler alternative models seem to be as good, 
we might want to favor the simpler model.  
 
Noncentrality-based Indices (RMSEA, CFI, RNI, CI) 
The concept of the noncentrality parameter is a somewhat difficult one. The rationale for the 
noncentrality parameter is that our usual chi-square fit is based on a test that the null hypothesis is true (

2 0Χ = ). This gives a distribution of the “central” chi-square. Because we are hoping not to reject the null 
hypothesis in structural modeling, it can be argued that we should be testing to reject the alternative 
hypothesis (Ha). A test that rejected the alternative hypothesis, Ha, would make statistical decisions using 
the “noncentral” chi-square distribution created under the case when Ha is assumed to be true in the 
population (i.e., an incorrect model in the population). This approach to model fit uses a chi-square equal 
to the df for the model as having a perfect fit (as opposed to chi-square equal to 0). Thus, the 
noncentrality parameter estimate is calculated by subtracting the df of the model from the chi-square (

2 dfχ − ). Usually, this value is adjusted for sample size and referred to as the rescaled noncentrality 
parameter: 
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2 The uncorrelated null model is not fully universal, although nearly so. Mplus uses an alternative null model (which they refer to as the 
"baseline" model) whenever there are exogenous measured variables (the different computation is not used for exogenous latent variables). 
When unanalyzed correlations among non-latent exogenous variables are included, the correlations are exempted from the parameter count in 
the null model, which has a conservative effect on the relative fit of the model. Most of the time this does not have a large impact on relative fit, 
but keep in mind that if you use a large number of measured covariates, fit may suffer. Researchers can always test a separate null model in 
which all variables uncorrelated (by omitting all model statements) and then compute the relative fit indices manually. Although Mplus employs 
this alternative definition of the baseline model, to the best of my knowledge, all other SEM software programs, except lavaan use a null model 
with all variables uncorrelated. lavaan, however, uses the traditional null model if all of the unanalyzed correlations are specified in the model.  
3 This list excludes fit indices that use explicit parsimony corrections (see next section), which also could be classified as relative fit indices. 
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A population version is often referred to as δ and is computed by dividing by N rather than N - 1. 
Noncentrality-based indices include the Root Mean Square Error of Approximation (RMSEA; not to be 
confused with RMR or SRMR), Bentler’s Comparative Fit Index (CFI), McDonald and Marsh’s Relative 
Noncentrality Index (RNI), and McDonald’s Centrality Index (CI; 1990; called Mc by Hu and Bentler; and 
sometimes referred to as NCI). Because the noncentrality parameter is simply a function of chi-square, 
df, and N, several of the formulas for the relative fit indices described above can be algebraically 
manipulated to include the noncentrality parameter. For example the TLI can also be stated as: 
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Where dmodel and dfmodel are the noncentrality parameter and the degrees of freedom for the model tested 
and d0 and df0 are the noncentrality parameter and df for the null model. Work by Raykov (2000, 2005) 
shows that noncentrality parameter sample estimates are biased and that this problem may affect fit 
indices computed based on noncentrality (e.g., the RMSEA, CFI). The RMSEA is widely used and one of 
the indexes recommended by Hu and Bentler (1999). Some simulations have raised concerns about 
RMSEA’s performance with small degrees of freedom (Kenny et al., 2015; Shi et al., 2022), use with 
missing data (Fitzgerald et al., 2021), and dependency on sample size (e.g., Chen et al., 2008). 
 
Sample Size Independence 
Many of the relative fit indices (and the noncentrality fit indices) are affected by sample size, so that 
larger samples are seen as better fitting (i.e., have a higher fit index value). Bollen (1990) made a useful 
distinction between fit indices that can be shown to explicitly include N in their calculation and those that 
are dependent on sample size empirically. That is, even though a fit index may not include N in the 
formula, or even attempt to adjust for it, it does not mean that the fit index will really turn out to be 
independent of sample size. He also showed that the TLI and IFI are relatively unaffected by sample size 
(see also Anderson & Gerbing, 1993; Hu & Bentler, 1995; Marsh, Balla, & McDonald, 1988). 
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This is one reason why I tend to favor Bollen’s IFI. If you are interested in adjusting for parsimony, you 
might consider the Mulaik and colleague’s index PNFI2, which is a parsimony adjusted version of the IFI. 
One can make an argument about parsimony adjustment similar to Bollen’s argument about sample size. 
It might be important to differentiate between fit indices that are explicitly adjusting for parsimony and 
ones that are empirically affected by model complexity. The TLI is an example of an index that adjusts for 
parsimony, even though that was not its original intent. 
 
Recommendations 
Every researcher and every statistician seems to have a favorite index or set of indices. You should be 
prepared for reviewers to suggest the addition of one or two of their favorite indices. These suggestions 
are fairly easy to accommodate by the addition of the indices they suggest, but it would not be fair to 
yourself or others to pick the index that is most optimistic about the fit of your model. Since the late 
1990s, there has been concern that the recommended cutoff values for relative fit indices of .90 are too 
low and that higher values, such as .95 should be used. The simulation by Hu and Bentler (1999) seems 
to have been instrumental in moving the standards toward a more stringent criterion as well as nudging 
modelers to more consensus on which fit indices to report. 
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Hu and Bentler (1999) empirically examine various cutoffs for many of these measures, and their data 
suggest that to minimize Type I and Type II errors under various conditions, one should use a 
combination of one of the above relative fit indexes, such as the CFI or IFI, with values greater than 
approximately .95, in combination with the SRMR (good models < .08) or the RMSEA (good models < 
.06). These values should not be written in stone, and there may be models that don't quite reach these 
values and for which there are no better alternatives and for which there do not seem to be theoretically 
sensibly improvements possible. A CFI of .94 is perceived to be meaningfully different than a CFI of .95, 
which is an irrational faith in the precision of these values. It also is worth keeping in mind that most 
simulation studies on fit and cutoff values have been conducted on only a limited number of types of 
models (e.g., one-factor CFAs with normally distributed continuous indicators), and many types of 
models and conditions have not been extensively studied (McNeish, 2023). There have been some valid 
concerns raised about circumstances in which they do not perform optimally (e.g., Fan & Sivo, 2005; 
Marsh et al., 2004; see West et al., 2023 for a brief review), so the cutoffs proposed are not perfect. In 
my experience of testing a wide range of models, I have found that the Hu and Bentler cutoff values tend 
to be reached when a) a model cannot be substantially improved with theoretically sensible model 
modifications; b) a measurement model has high standardized loadings, fits better than alternative 
measurement models with different number of factors, and has no evident theoretically sensible 
modification indices; c) a full structural model does not have any alternative models that have superior fit. 
So, although the cutoffs recommended by Hu and Bentler may not be infallible or universally applicable, 
they appear to me to be useful for evaluating a large number of models in practice, and I presume this is 
why these cutoffs have remained a fairly widely applied standard of practice for some time now. More 
recently, Yuan and Marcoulides (2017) have proposed a more fine-grained set of descriptors, with a 
range of adjectives associated with certain values of the RMSEA (.01 = “excellent”, .05 = “close”, .08 = 
“fair” and .10 = “poor”) and the CFI (.99 = “excellent”, .95 = “close”, .92 = “fair” and .90 = “poor”), although 
it remains to be seen whether these guidelines become widely adopted or not. And McNeish and 
colleagues (e.g., McNeish, 2023; McNeish & Wolf, 2023) have proposed tailoring fit cutoffs based on 
simulation for each specific model tested.  
 
Comment: Hu and Bentler’s work did much to help narrow the field of fit indices and increase the 
standards for model fit. Their recommendations do not revolve around any single index, and it seems 
many indices are effective for screening poor models. Their recommendations involve using one of the 
relative fit indices close to .95 or higher—either CFI, IFI, RNI, or gamma hat or Mc (McDonald, 1989) with 
a .90 cutoff—in combination with one of the two absolute fit indices—either RMSEA or SRMR—below 
around .08 or .06, respectively. They also report high intercorrelations among many fit indices, so none 
may have an enormous advantage over others. Hu and Bentler found that Mc, TLI, and RMSEA tend to 
be too conservative in selecting models (more likely to show poor fit) in small samples, so I usually do 
not use RMSEA (reporting SRMR instead) unless reviewers ask for it and I have a slight preference for 
Bollen’s IFI index based on Bollen’s argument (Bollen, 1990) and the data from Hu and Bentler 
suggesting that the IFI is not importantly affected by sample size. I would ideally prefer to report the IFI in 
combination with the SRMR for my work, but because Mplus computes only a limited number of fit 
indices and does not include the IFI, I tend to report the CFI instead (for the many examples that I have 
computed IFI for by hand, I have found a close correspondents with the CFI anyway). An important point 
is that researchers should decide a priori about fit criteria, state those criteria in their reports, and 
consider reporting more than one fit index (Jackson, Gillaspy, & Purc-Stephenson, 2009). It is not fair to 
change fit indices based on values that make your fit look better! As with any conventional cutoff 
recommendation, values tend to be taken overly seriously.  
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