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Practical Approaches to Dealing with Nonnormal and Categorical Variables 
 
Definitions and Distinctions 
First, it is important to distinguish between categorical variables and continuous variables.  Categorical 
variables are those with two values (i.e., binary, dichotomous) or those with a few ordered categories.  
Examples might include gender, dead vs. alive, audited vs. not audited, or variables with few response 
options like “never,” “sometimes,” or “always.”  Continuous variables are variables measured on a ratio or 
interval scale, such as temperature, height, or income in dollars.   
 
Ordinal variables with many categories, such as 7-point Likert-type scales of agreement, are usually safely 
treated as “continuous.”  In practice, most researches treat ordinal variables with 5 or more categories as 
continuous, and there is some evidence to suggest this is not likely to result in much practical impact on 
results (e.g., Babakus, Ferguson, & Jöreskog, 1987; Dolan, 1994; Johnson & Creech, 1983; Hutchinson & 
Olmos, 1998). If ordinal variables with many categories are nonnormal, then data analytic techniques for 
nonnormal continuous variables should be used (see below). See Finney and DiStefano (2013) for a good 
summary of the justification of this general strategies in structural equation modeling.  
 
When variables are measured on an ordinal scale and there are relatively few categories, 2-4 categories, 
estimation methods specifically designed for categorical variables are recommended.  This includes 
nominal binary variables, because binary variables can be considered ordinal for the purpose of meaningful 
comparisons between the two groups (e.g., gender).  A categorical analysis approach will have the greatest 
advantage (less bias) compared with standard ML when the following conditions hold:  (1) when the values 
between categories are not equidistant; (2) when the relationship between the categorical measured 
variable and the theoretical variable it is supposed to measure is not a linear relationship—another way of 
stating (1); (3) when the ordinal variable is skewed or kurtotic.  
 
Detection of Multivariate Nonnormality 
So, how do you know your data are multivariate normal?  The first step is to carefully examine univariate 
distributions and skew and kurtosis.  West, Finch, & Curran (1995) recommend concern if skewness > 2 
and kurtosis > 7.  Kurtosis is usually a greater concern than skewness.  If the univariate distributions are 
nonnormal, then the multivariate distribution will be nonnormal.  One can have multivariate nonnormality 
(i.e., the joint distributions of all the variables is a nonnormal joint distribution) even when all the individual 
variables are normally distributed (although this is probably relatively infrequent in practice, at least not 
severe multivariate nonnormality).  Therefore, one should also examine multivariate kurtosis and skewness.  
However, tests of multivariate normality are only available in EQS and LISREL.  Mardia’s multivariate 
skewness and kurtosis tests are distributed normally (z-test) in very large samples, so can be evaluated 
against a t, z, or chi-square distribution.  Lawrence DeCarlo (1997) has developed macros for SPSS and 
SAS to calculate Mardia's multivariate skewness and kurtosis estimates and test them for significance 
(available at http://www.columbia.edu/~ld208/). EQS also provides a “normalized estimate” of Mardia’s 
kappa.  Bentler and Wu (2002) suggest that a normalized estimate greater than 3 will lead to chi-square and 
standard error biases.   
 
Recommendations for Continuous Nonnormal Variables 
In practice, some structural equation models with continuous variables (and generally including ordinal 
variables of five categories or more) will not have severe problems with nonnormality.  The effect of violating 
the assumption of nonnormality is that chi-square is too large (so too many models are rejected) and 
standard errors are too small (so significance tests of path coefficients will result in Type I error). 
 
The scaled chi-square and “robust” standard errors using ML estimation is a method suggested by Satorra 
and Bentler (1988; 1994). It appears to be a good general approach to dealing with nonnormality (Hu, 
Bentler, & Kano, 1992; Curran, West, & Finch, 1996).  Adjustments are made to the chi-square (and to 
relative fit indices in some packages, such as Mplus, lavaan, and EQS) and standard errors based on a 
weight matrix derived from an estimate of multivariate kurtosis.  Mplus prints this kurtosis adjustment, 
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referred to as the “scaling correction factor” (scf; or as d in Finney & DiStefano, 2013). The scaling 
correction factor is the standard chi-square divided by the scaled chi-square. The ratio is derived from a 
multivariate kurtosis estimate used to adjust the chi-square and standard errors. When data are multivariate 
normal, this scaling correction factor is 1.0, and there is no adjustment to the standard ML chi-square.  The 
more multivariate kurtosis, the larger this scaling correction factor will be (e.g., 1.6 suggests the ML chi-
square is approximately 60% higher than the scaled chi-square).  At this point, no one has suggested a 
conventional value for the scaling correction factor that would indicate problematic levels of nonnormality, 
but I would be more concerned when the chi-square inflation is greater than 5 or 10% (scf of 1.05 or 1.10).   
 
Depending on the complexity of the model and the severity of the problem, sample sizes of greater than 250 
may be needed (Hu & Bentler, 1999; Yu & Muthén, 2002). For smaller samples, there is a potential danger 
of overcorrection with this method. This approach is available in LISREL (ML Robust), EQS (ML Robust), 
Mplus and lavaan (MLM for "maximum likelihood mean adjusted").   
 
Bootstrapping is an increasingly popular and promising approach to correcting standard errors, but it seems 
that more work is needed to understand how well it performs under various conditions (e.g., specific 
bootstrap approach, sample sizes needed).  The simulation work that has been done (Fouladi, 1998; 
Hancock & Nevitt,1999; Nevitt & Hancock, 2001) suggests that, in terms of bias, a standard “naïve” 
bootstrap seems to work at least as well as robust adjustments to standard errors.  However, the Nevitt and 
Hancock (2001) results suggest that standard errors may be erratic for sample size of 200 or less and 
samples of 500 to 1,000 may be necessary to overcome this problem.  The complexity of the model should 
be taken into account as their simulations were based on a moderately complex factor model (i.e., smaller 
sample sizes may be acceptable for simpler models).  An alternative bootstrapping approach, the Bollen-
Stine bootstrap approach, is usually recommended for estimation of chi-square.  The Bollen-Stine chi-
square approach seems to adequately control Type I error but there is some cost to power (Nevitt & 
Hancock, 2001). Bootstrapping approaches have now been incorporated in most major SEM packages. 
 
Recommendations for Categorical Variables 
There seems to be growing consensus that the best approach to analysis of categorical variables (with few 
categories) is the DWLS approach implemented in Mplus.  This approach, usually referred to as a robust 
weighted least squares (WLS) approach in the literature (estimator = WLSMV or WLSM in Mplus and 
lavaan).  The WLSMV approach seems to work well if sample size is 200 or better (Bandalos, 2014; Flora &  
Curran, 2004; Muthén, du Toit, & Spisic, 1997; Rhemtulla, Brosseau-Liard, & Savalei, 2012).  In Lisrel and 
EQS, a similar approach that uses WLS together with polychoric correlations and asymptotic covariance 
matrices is used.  In Mplus, there are two versions of DWLS estimates that have different approaches to 
setting the scaling of the y* distribution, delta parameterization and theta parameterization. Delta 
parameterization (marginal) is the default and sets the scaling by setting the measurement residual to 1.0 
and theta parameterzation (conditional) sets the scaling of the y* variance to 1.0, estimating the 
measurement residual variance. Both can be called variants on the probit model, but theta parameterization 
corresponds more exactly to the probit regression estimates.  These scaling choices are arbitrary in the 
sense that the chi-square for the model and the significance tests of the parameter estimates will be equal.  
DWLS works well in many situations (although one exception may be when missing data are MNAR), but a 
special full maximum likelihood estimation for binary or ordinal data can also be applied successfully. The 
full maximum likelihood estimation with categorical variables provides logit estimates. This approach is not 
yet available in many SEM software programs, but Mplus has implemented this when ESTIMATOR=ML is 
used in conjunction with dependent variables identified as categorical on the CATEGORICAL statement (a 
robust version of ML for binary data, which uses robust standard error estimates, is called MLR in Mplus). 
Probit and logistic estimates will often be quite similar in terms of their statistical conclusions. Work by 
Bandalos (2014) indicates that robust MLR performs better than the unadjusted ML and that MLR 
performed similarly to the WLSMV method. Compared with WLSMV, MLR has somewhat less power but 
better control of Type I error in smaller samples. Bandalos's work also suggests that sample sizes of 150 
may be too small with either method, especially where distributions of the categorical variables are 
asymmetric.  
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In the most recent editions of Amos, an alternative approach to categorical variables has been added (Lee, 
2007).  The Bayesian approach requires an iterative process known as the Markov Chain Monte Carlo 
(MCMC).  To date, there is fairly scant information on the performance of this approach with SEM with 
respect to fit estimation, the optimal algorithms to use, and standard errors under various conditions (cf. Lee 
& Yang, 2006).  The Bayesian estimation process involves some artful judgment in the testing process. The 
Bayesian structural modeling approach has not become a popular alternative thus far (see Kaplan & 
Depaoli, 2012 for an introduction). 
 
Fit Indices and Nested Tests 
Relatively little simulation work on alternative fit indices (e.g., RMSEA, IFI, CFI) derived from robust 
approaches to nonnormal continuous variables (Satorra-Bentler robust approach or bootstrapping) is 
currently available, but the Satorra-Bentler scale chi-square appears to outperform the maximum 
unadjusted likelihood chi-square when data are nonnormal (Curran et al., 1996). Thus far, studies suggest 
that at least some alternative fit indices (TLI, CFI, RMSEA) using standard cutoffs (Hu & Bentler, 1999) also 
perform fairly well with the robust approach as long as the Satorra-Bentler scale chi-square is used to 
compute incremental fit indices and sample size is reasonably large (N = 250 or larger; Nevitt & Hancock, 
2000; Yu & Muthén, 2002).  The user should use some caution, because programs do not always 
recalculate incremental fit indices such as the CFI, TLI, or the IFI using the scaled chi-square for the tested 
model or the null model (I know that Mplus and EQS do use the scaled chi-squares in their calculation).  
Relative fit indices will likely be problematic when scaling corrections to the null model are not used (Hu & 
Bentler, 1999). 
 
Perhaps less in known about how fit indices perform with DWLS under various circumstances—certainly not 
with the same level of precision on which Hu and Bentler based their recommendations about fit with 
continuous variables.  The robust WLSMV chi-square used by Mplus seems to perform pretty well (Flora & 
Curran, 2004), although there is still likely to be a practical problem with using chi-square as a sole measure 
of fit because of its sensitivity to sample size. There is some evidence that RMSEA, TLI, and CFI perform 
reasonably well with categorical model estimation (DWLS; Beauducel & Herzberg, 2006; Hutchinson & 
Olmos, 1998; Yu & Muthén, 2002), and they are likely to perform best when robust adjustments are made to 
the chi-square.   
 
The Weighted Root Mean Square Residual (WRMR) is a measure that Muthén has recommended for fit of 
models with categorical observed variables. Yu and Muthén (2002) recommend that a model with a WRMR 
of less than 1.0 indicates good fit (I have also seen the value of .9 recommended).  In my experience the 
WRMR does not always give sensible results, and I do not recommend it as a sole indicator of fit with 
DWLS estimation. The Bayesian Information Criterion (BIC) is sometimes suggested as a measure of fit for 
categorical models, but there is no consistently used cutoff for good fit and the BIC may be most practical 
for comparing fit of different models.  In sum, my best recommendation (consistent with the Finney & 
DiStefano, 2013, review) for evaluating model fit with the DWLS approach at this point in time is to use the 
TLI or CFI (> .95) and RMSEA (< .05), possibly in conjunction with the WRMR (approximately less than 1).  
 
Nested tests (likelihood ratio test) require special attention for robust estimation. The scaling correction 
factor (scf) must be used to weight the difference (Satorra, 2000; Satorra & Bentler, 2001). The following 
formula gives the adjustment to the diffence in chi-square which can be used for significance testing:  
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The scf is equal to the ratio of traditional ML chi-square to the Satorra-Bentler scale chi-square for the 
model, or 2 2scf /ML SBχ χ= .  
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Nested tests for ordinal analysis methods are not widely available in software programs currently, and there 
has been limited simulation work comparing methods.  One suggestion has been to use a WLS estimator 
just for comparison of model chi-square values using the simple difference for chi-square and degrees of 
freedom. An alternative is a more elaborate vanishing tetrad test (Hipp & Bollen, 2003). Asparouhov and 
Muthén (2006) have adapted the tests developed by Satorra (2000) and Satorra and Bentler (2001) that 
computes the estimated ratio of the weighted likelihoods of two models using WLSMV estimation for ordinal 
variables.  Mplus provides automated nested tests with the DIFFTEST command that can be used for 
several estimation or robust methods.  
 
Missing Data Estimation with Non-normal or Categorical Data 
For nonnormal continuous data where some data are missing, a variation on the full maximum likelihood 
can be used (Yuan-Bentler, 2006) approach and missing data with categorical. In Mplus and lavaan, this is 
obtained with ESTIMATOR = MLR. Missing data with categorical variables is best handled with full 
maximum likelihood (logistic estimation), which is only available currently in Mplus.  WLSMV estimates with 
missing data may work well generally (Asparouhov & Muthén, 2006), but it is not a full information method 
and may not perform as well if data are not at least MAR. Amos, which offers FIML for missing data and 
bootstrapping for nonnormal data, does not currently have a method of dealing with both missing and 
nonnormal data simultaneously. 
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