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 Alternative Estimation Methods 
ML 
 
Remember that the usual approach to estimating fit and coefficients in SEM is the maximum likelihood (ML) 
approach.  ML uses derivatives to minimize the following fit function: 
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The ML estimator assumes that the variables in the model are (conditionally) multivariate normal (i.e., the 
joint distribution of the variables is distributed normally).1 
 
GLS 
Generalized least squares is an alternative fitting function. The GLS fit function also minimizes the 
discrepancy between S and Σ, but uses a weight matrix for the residuals, designated W. 
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Notice that this is a much simpler function (e.g., no logs), and it is clear that the discrepancy between the 
obtained covariance matrix and the covariance matrix implied by the model (S – Σ) is minimized after 
weighting it by W.  Although any W can be chosen for the weight matrix, most commonly, the inverse of the 
covariance matrix, S, is used in SEM packages.  FGLS is asymptotically equivalent to FML, meaning that as 
sample sizes increase, they are approximately equal.  FGLS is based on the same assumptions as FML and 
would be used under the same conditions.  It is thought to perform less well, however, in small samples, so 
FML is usually chosen instead of FGLS.  The simplicity of the function, however, means that other weight 
matrices could be used in an attempt to correct for violations of distributional assumptions. 
 
ADF/WLS/AGLS 
The asymptotic distribution free function for SEM is given by Browne (1984).  It is described as arbitrary 
generalized least squares (AGLS) by Bentler in the EQS package and weighted least squares (WLS) by 
Joreskog and Sorbom in LISREL (and the related approach described below used by Mplus and lavaan). 
The main advantage of the ADF estimator is that it does not require multivariate normality.  The ADF 
estimator is based on the FGLS, except a different W is chosen. It can be written in a general form that 
encompasses GLS, ML, and ULS (not discussed here) where the difference depends on the choice of W: 
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W used in FADF is based on a covariance of all of the elements of the covariance matrix, S.  That is, a 
covariance matrix is constructed that estimates the covariances between each sij element of S, and is 
therefore a ½[v(v+1)] by ½[v(v+1)] matrix, with v as the number of observed variables. It is important to 
realize that the “covariances of covariances” are related to kurtosis estimates (so called “fourth-order 
moments”).2  So, the GLS fit function is weighted by variances and kurtosis in attempt to correct for 
violations of the normality assumption.  Another way of saying this is that when the data are normal, the 
ADF estimator reduces to GLS because there is no kurtosis.  The large weight matrix causes serious 
practical difficulties when there is a large number of variables in the model (e.g., more that 20 or so), and 
computer packages (e.g., EQS) do not allow estimation unless the number of cases is equal or greater than 
number of elements in the weight matrix (i.e., ½[v(v+1)] times ½[v(v+1)] divided by 2).  Simulation studies 
suggest that chi-square values are severely overestimated with small samples and that sample sizes of 
about 5000 are necessary for good estimates.  A study by Olsson, Foss, Troye, and Howell (2000) suggests 

                                                 
1 The conditional portion of this assumption is that the distribution of the y variable that is of importance is the residual distribution. That is, if after 
accounting for the predictors of y, the distribution is normal, then the assumption is met. It also should be noted here that, like regression, there is 
not an assumption about the distribution of the predictor/independent variable, only the dependent variable.  
2 A raw form equation for kurtosis is ( )4 4/ /Y Y N s −  ∑ , where the deviations from the mean are raised to the fourth power. 
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that ADF estimation performs poorly when the model is misspecified.  Combined with the limitation of 
variables, this is usually seen as an unattractive approach when nonnormality exists. 
 
WLS for Categorical Variables 
The ADF estimator is not very practical as a general estimation approach in its original form, but it has been 
implemented with considerable success with categorical (binary and ordinal) variables in modified form. 
Models with categorical variables are always considered to be in violation of the normality assumption and, 
thus, the usual FML estimator is not recommended.  In the context of the categorical variable estimation,  the 
ADF estimator is most often referred to these days as WLS.  The modified approach that has developed is a 
multiple-step estimation involving polychoric correlations as input to create the asymptotic covariance matrix 
used for weighting in the WLS estimation.  The idea behind the method is that categorical variables can be 
conceived as having an underlying continuous unobserved variable, called y*.  y* is estimated by polychoric 
correlations which correct for loss of information when Pearson correlations are used due to cruder 
categorization of a continuous variable (see Olsson, 1979; MacCallum, Zhang, Preacher, & Rucker, 2002). 
Tetrachoric correlations are a special case of polychoric correlations involving only binary variables, and 
polyserial correlations are those involving the correlation between a binary and a continuous variable. Often 
all three types are referred to more generally as polychoric correlations. The concept of y* is the same as 
that invoked to conceptualize probit analysis.  The variable y* is a true value that is not observed but leads 
to the observed response of y, which is binary or ordinal.  The value of y* can be thought of as a propensity 
to respond 0 or 1 on the y variable in the case that y is binary, for example.  The figure below is an analogue 
representation of the idea: 

τ y = 1y = 0
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In a sense, the WLS estimation is performed on the estimated y* variables in this two-step estimation 
process. LISREL requires the user to implement this process explicitly in separate steps, but other software 
programs, such as Mplus, lavaan, and EQS, allow the two-step process to be handled automatically (as 
long as raw data are available). The approach requires an inversion of the full weight matrix, which can 
become cumbersome when there are many variables.  Estimation using this approach performs reasonably 
well statistically in a number of circumstances, but can be improved upon.    
 
DWLS 
Muthén (1993) suggested a modification of this general categorical variable approach, known as diagonally 
weighted least squares (DWLS) estimation or a "limited information" approach.   The DWLS approach uses 
the WLS estimator with polychoric correlations as input to create the asymptotic covariance matrix.  The 
approach is computationally more practical because it avoids inversion of the large weight matrix (using 
something called “Taylor expansion”). The method seems to perform better statistically as well (Rhemtulla, 
Brosseau-Laird, & Savalei, 2012), performing better than the full WLS for small samples.  The approach is 
typically paired with robust estimation adjustments (sometimes called the "sandwich" estimator) that 
improves standard error, chi-square, and fit indices.  In Mplus (and lavaan, and sometimes more generally 
in the literature), the DWLS with adjustment is referred to as WLSM or WLSMV, depending on whether just 
means or means and variances are used in the adjustment process.  The robust DWLS methods seem to 
work well in many conditions, including smaller samples and with nonnormal data (e.g., Rhumtulla et al., 
2012).  EQS (Bentler & Wu, 2002) uses an alternative robust method described as a "partitioned maximum 
likelihood" approach, obtaining estimates in separate steps depending on the types of variables involved. 
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The Satorra-Bentler Scaled Chi-square and Standard Errors 
Satorra and Bentler suggested that multivariate kurtosis estimates be used to “scale” or correct the chi-
square value and standard errors (Satorra &  Bentler, 1988; Satorra & Bentler, 1994).  Chi-square is usually 
inflated with nonnormal samples and standard errors are usually too small (although depending on whether 
the distribution is platykurtic or leptokurtic, the direction of bias can differ). This approach is used for 
continuous nonnormal variables and appears to do fairly well with small samples (200-500 cases; Curran, 
West, & Finch, 1996).  This is the same robust adjustment used for in conjunction with DWLS for categorical 
variables.     
 
Bootstrapping 
Bootstrap is another approach to problems with nonnormality (but is not typically recommended for binary 
and ordinal variables with few categories).  In the bootstrap approach, a large number of samples (usually 
500 or 1000 are recommended) are drawn from your data.  The samples are drawn with replacement, so 
that the same cases may be drawn into the same bootstrap sample.  These repeated samples create a mini 
sampling distribution, and based on the central limit theorem, it should have desirable distributional 
characteristics. There are a number of variations on bootstrapping with SEM, including “naïve” bootstrap, 
bias correction, and bias corrected accelerated (but see Bollen & Stine, 1993; Yung & Bentler, 1996).  The 
bootstrap samples are used to calculate new standard errors ("naïve" bootstrap) and can be used to correct 
the chi-square for fit (Bollen-Stine bootstrap).  The z-tests or “critical ratio” uses the bootstrap standard 
errors, and are considered “approximate” significance tests.  Evidence by Nevitt and Hancock (2001) 
suggest an original sample size of 500 or greater may be needed for stable bootstrap estimation. 
 
Other Estimators 
Other possible estimators include two-stage least squares (2SLS), three-stage least squares (3SLS), 
ordinary least squares (OLS), and unweighted least squares (ULS). Most of these approaches are seldom 
used, because they provide poor estimation (e.g., ULS) or because they have not been very thoroughly 
investigated (e.g., 3SLS).  2SLS has received more attention in statistical papers because it does not rely 
on normality assumptions and is one approach to moderator tests in SEM (more on this topic later; see 
Bollen & Biesanz, 2002; Bollen & Paxton, 1998). 
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