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SEM with Categorical Variables 
Definitions and Distinctions 
Categorical variables are those with two values (i.e., binary, dichotomous) or those with a few ordered 
categories (typically less than five) require special estimation considerations in structural equation modeling. 
Examples might include sex, dead vs. alive, hospitalized vs. not, or variables with few response options like 
“never,” “sometimes,” or “always.” Social scientists generally treat variables measured on a ratio or interval 
scale, such as temperature, height, or income in dollars, or ordinal variables with 5 or more categories as 
continuous (see the handout “SEM with Nonnormal Continuous Variables” and the handout from my 
Univariate Statistics course called “Levels of Measurement and Choosing the Correct Statistical Test” for 
references and details). Similar to regression analysis, measured variables which are not predicted by other 
variables in the model (including not predicted by latent variables) do not require special estimation for 
categorical variables (e.g., experimental vs. control group).  
 
When variables predicted by other variables (an endogenous variable in a model or an indicator of a latent 
variable) are measured on an ordinal scale and there are relatively few categories, 2-4 categories, 
estimation methods specifically designed for categorical variables are recommended (Finney & DiStefano, 
2013). This includes nominal binary variables (e.g., pass/fail, divorced, yes/no, heart attack vs. no heart 
attack). For ordinal variables with several values, a categorical analysis approach will have the greatest 
advantage (less bias) compared with standard ML when the following conditions hold (Rhemtulla, 
Brosseau-Liard, & Savalei, 2012): (1) when the values between categories are not equidistant; (2) when the 
relationship between the categorical measured variable and the theoretical variable it is supposed to 
measure is not a linear relationship—not entirely unrelated to (1); and (3) when the ordinal variable is 
skewed or kurtotic.  
 
Estimators for Binary and Ordinal Variables 
WLSMV. The most common and potentially the best approach to analysis of binary and ordinal variables 
(with few categories) is what is referred most to most commonly as diagonally weighted least squares 
(DWLS) approach (Muthén, du Toit, & Spisic, 1997). This estimation method is called weighted least 
squares mean and variance adjusted (WLSMV) in Mplus and the R package lavaan (it is invoked by 
estimator = WLSMV). The WLSMV approach seems to work well if sample size is 200 or better 
(Bandalos, 2014; Flora & Curran, 2004; Muthén et al., 1997; Rhemtulla, Brosseau-Liard, & Savalei, 2012).1 
In LISREL and EQS, a similar approach that uses WLS together with polychoric correlations and asymptotic 
covariance matrices is used.  
 
WLSMV works by first creating a matrix of polychoric correlations. Polychoric correlations estimate the what 
the association between two continuous, normally distributed variables would be if they been converted to 
dichotomous or ordinal observed variables.2 Polychoric correlations, which Finney and DiStefano (2013) 
refer to as “latent correlations” represent the correlation between the unobserved underlying continuous 
variables frequently called y* (“y star”; some authors use eta, η, but that potentially confuses it with what we 
use for multiple indicator latent variables). In the estimation process, the polychoric correlations are used to 
create an asymptotic covariance matrix that serves as the weight matrix for the WLS estimation. The 
resulting path estimates represent the change in y* on a standardized z scale for each unit change in the 
predictor. These are the same as what is obtained with probit regression. The distribution of y* requires an 
arbitrary scaling constraint, much like a latent variable. In Mplus, there are two versions of WLSMV 
estimates that have different approaches to setting the scaling of the y* distribution, delta parameterization 
and theta parameterization (Muthén & Asparouhov, 2002). Delta parameterization is the default and 
provides a scaling constraint by setting the measurement residual to 1.0, with no measurement residual 
variance estimated, and theta parameterization sets the scaling of the y* variance to 1.0, estimating the 

 
1 There is another option for weighted least squares, called WLSM in Mplus and lavaan. Both WLSM and WLSMV adjust the standard errors in the 
same way, but the WLSM method only does a mean adjustment when correcting the chi-square. Because the WLSMV method seems to work better 
(Asparouhov & Muthen, 2010a; Muthen et al., 1997), I do not recommend using the WLSM option.  
2 There are three related definitions for this type of corrected correlation: tetrachoric, for binary variables, polyserial for binary and continuous, and 
polychoric for ordinal variables. The term polychoric correlation is often used as a general way of referring to any of these three related correlations.  
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measurement residual variance. Both can be called variants on the probit model, but theta parameterization 
corresponds more exactly to the probit regression estimates in which the y* distribution is assumed to be 
standardized. These scaling choices are arbitrary in the sense that the chi-square for the model and the 
significance tests of the parameter estimates will be equal. WLSMV works well in many situations, although 
because WLSMV is not a full information method it has stricter assumptions for missing data (Asparouhov & 
Muthén, 2010).  
 
MLR (robust marginal maximum likelihood). Marginal maximum likelihood estimation (or sometimes 
“maximum marginal likelihood” or just “full maximum likelihood”) is a special maximum likelihood approach 
for binary and ordinal variables (Bock & Atkin, 1981; Christoffersson, 1975; Muthén & Christoffersson, 
1981). This method, which is less commonly employed with SEM models than the WLSMV method, uses 
the frequency tables in the analysis so can be distinguished from the ML estimation process used for 
continuous variables. Commonly used in Item Response Theory (IRT) measurement analysis, the default 
categorical ML estimation yields logistic parameter estimates that can be converted to odds ratios.3 This 
approach is not available in many SEM software programs, but Mplus uses the marginal maximum 
likelihood estimation approach this when ESTIMATOR=ML is used in conjunction with dependent variables 
identified as categorical on the CATEGORICAL statement. A robust version of ML for categorical variables, 
which uses robust standard error estimates, is called MLR in Mplus (Note that this MLR is different from the 
estimation approach obtained when variables are not declared as categorical). The R package lavaan 
currently has limited categorical ML estimation capabilities. An important drawback to the MLR estimation is 
that the traditional chi-square nor most of the usual alternative fit indices are available to judge fit. Instead 
Mplus prints a Pearson chi-square and likelihood ratio chi-square based on the contingency tables for the 
model implied and obtained frequencies. WLSMV probit and ML logistic estimates will often be quite similar 
in terms of their statistical conclusions. Work by Bandalos (2014) indicates that robust MLR performs better 
than the unadjusted ML and that MLR performed similarly to the WLSMV method. Compared with WLSMV, 
MLR has somewhat less power but better control of Type I error in smaller samples. Bandalos's work also 
suggests that sample sizes of 150 may be too small with either method, especially where distributions of the 
categorical variables are asymmetric. Newsom and Smith (2020) also found that the two estimators 
performed similarly but that with MLR had important convergence advantages and that WLSMV had some 
advantages for the small sample sizes in the context of binary growth curve models. See the handout from 
this class “Alternative Estimation Methods” for more details on categorical estimation. 
  
Bayesian. Amos does not use either of the above estimation approaches for categorical variables, but the 
most recent editions allow a Bayesian approach (Lee, 2007). The Bayesian approach, also available in 
Mplus and the R package blavaan, requires an iterative process known as the Markov Chain Monte Carlo 
(MCMC). To date, there is less information on the performance of this approach with SEM with respect to fit 
estimation, the best priors settings, the optimal algorithms to use, and standard errors under various 
conditions (cf. Lee & Yang, 2006). The Bayesian estimation process depends upon the distributional priors 
used and some artful judgment in the testing process. The Bayesian structural modeling approach has not 
become a widely used alternative thus far for general conditions but may increase in popularity at least for 
certain circumstances in the future (see Kaplan & Depaoli, 2012 for an introduction; see also Depaoli, 2021; 
and the handout from this class “Alternative Estimators”).  
 
Fit Indices  
Less is known about how fit indices perform with WLSMV and categorical MLR under various 
circumstances—certainly not with the same level of precision on which Hu and Bentler and others have 
based their recommendations about fit with continuous variables under a variety of conditions. The WLSMV 
chi-square used by Mplus (see Asparouhov & Muthén, 2010a) seems to perform pretty well, even for 
sample sizes as small as 100 (Flora & Curran, 2004), although there is still likely to be a practical problem 
with using chi-square as a sole measure of fit because of its sensitivity to sample size. Although some work 
has supported use of RMSEA, TLI, and CFI with categorical model estimation (WLSMV; Beauducel & 

 
3 Probit parameter estimates in Mplus can also be requested with link = probit. 
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Herzberg, 2006; Hutchinson & Olmos, 1998; Yu & Muthén, 2002), Savalei (2021) provides evidence that fit 
is overestimated with these indices and suggests some computational adjustments (using continuous ML 
with polychoric correlations) that appear to work well. McNeish and Wolf (2024) suggest a dynamic fit 
approach with relative fit index cutoffs tailored to specific models.  
 
Until the most recent version (Version 8), Mplus reported the Weighted Root Mean Square Residual 
(WRMR) for fit of models with categorical observed variables (Yu & Muthén, 2002 recommended WRMR of 
less than 1.0 as indicative of good fit). The most recent versions of the program no longer use WRMR 
because of data suggesting poor performance with larger samples and larger models (DeStefano, Liu, 
Jiang, & Shi, 2018) and use a modified computation of the SRMR instead (Asparouhov & Muthén, 2018), 
where the usual cutoff of < .08 is suggested to indicate good approximate fit. Recent evidence (Savalei, 
2021; Shi, Maydeu-Olivares, & Rosseel, 2020) suggests that SRMR is not subject to the overfit bias of the 
CFI and RMSEA. 
 
Nested Tests 
Nested tests (likelihood ratio test) require special attention for robust estimation, including WLSMV (i.e., 
estimator = WLSMV in Mplus and lavaan). The scaling correction factor (scf) must be used to weight the 
difference (Satorra, 2000; Satorra & Bentler, 2001). Asparouhov and Muthén (2006; 2018b) have adapted 
the tests developed by Satorra (2000) and Satorra and Bentler (2001) that computes the estimated ratio of 
the weighted likelihoods of two models using WLSMV estimation for ordinal variables. Mplus provides 
automated nested tests with the DIFFTEST command that can be used for several estimation or robust 
methods (Asparouhov & Muthén, 2013, 2018b; Bryant & Satorra, 2012; Satorra & Bentler, 2010). See the 
handout “Examples of Chi-square Difference Tests with Nonnormal and Categorical Variables” for an 
illustration. 
 
Missing Data Estimation with Non-normal or Categorical Data 
WLSMV (method = WLSMV) estimation uses a partially pairwise deletion estimation and is not a full 
information estimation approach, and therefore it may not work as well with missing data as categorical 
MLR unless there is only one dependent variable and values are at least MAR (Asparouhov & Muthén, 
2006; Asparouhov & Muthén, 2010b).  
 
Other Types of Categorical Variables 
In addition to binary and ordinal variables, Mplus also has estimation approaches for count variables, 
including Poisson, negative binomial, zero-inflated Poisson and negative binomial, nominal (multnomial 
logistic regression), and continuous survival analysis. Few other SEM packages have features for these 
types of variables and, although the extension from regression is relatively straightforward, there has been 
little simulation work thus far to examine how these algorithms perform with model fit and standard error 
estimation in the SEM context.  
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