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Schedule 
 
Thursday, Sept. 16. 

8:30-9:00 Introductions and overview 
9:00-11:00 Preparing data sets for Mplus, Mplus basic syntax, path  
analysis, indirect effects tests, confirmatory factor analysis basics 
11:00-12:00 Breakout to analysis teams to work on the above topics 
12:00-1:30 Lunch 
1:30-3:30 More on CFAs, fit indices, model modification, full  
structural models, nonnormal data  
3:30-5:00 Breakout to analysis teams to work on the above topics 

 
Friday, Sept. 17 

8:30-11:00, alternative estimation, missing data, longitudinal  
modeling issues, latent growth curve analysis  
11:00-12:30 Breakout to analysis teams to work on the above topics 
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 Mplus Capabilities 
 
Mplus is a general structural equation modeling (SEM) package capable of the 
commonly used analyses such as: 
 

• confirmatory factor analysis 
 
• path analysis 
 
• full structural models (path analysis with latent variables—a combination of path 

analysis and confirmatory factor analysis) 
 
• multi-group structural models  
 
• latent growth curve analysis 
 
• estimation methods for non-normal data 
 
• missing data estimation 

 
In addition to these standard SEM features. Mplus has special capabilities that not all 
SEM packages have: 
 

• exploratory factor analysis (including EFA with dichotomous items) 
 
• analysis of dichotomous measured variables  
 
• analysis of ordinal measured variables 
 
• multinomial logistic, poisson, and probit regression models 
 
• latent class analysis (confirmatory factor analysis with categorical latent 

variables) 
 
• mixture modeling (structural models with categorical latent variables) 
 
• multilevel regression (hierarchical linear models) 
 
• multilevel structural equation models (for hierarchically structured data) 
 
• estimation procedures for sampling weights, clustered sampling, and stratified 

sampling designs 
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Syntax Basics 
Types of Files 
Like SPSS and SAS, Mplus has three basic types of files.  Each of these file types is 
really just ASCII file format, which is sometimes convenient for emailing or pasting into 
another program. 
 

Data file:  contains the data. This is an ASCII or text file and the extension .dat is 
commonly used but not required.  It should contain no character data and 
missing data symbols are limited. 
 
Input file: stores syntax that specifies the model that you would like to test (.inp 
extension is used in Mplus 3).   
 
Output file: contains the results for the model tested (.out extension).   

 
Overview of Program File Sections 
 
There are seven commonly used sections (referred to as “Commands”) of Mplus input 
files that I will review.1  Each command name is followed by a colon and functions as a 
section heading that contains one or more statements.  Each individual statement is 
followed by a semicolon (caution:  omitting the semicolon will lead to syntax errors).  
 
In all examples, I will use upper case letters to distinguish Mplus commands or 
statements from example content. In practice, however, commands and statements can 
be in lower or upper case or mixed cases. 
 

Title:  This optional section simply gives any title which you wish to give your  
model.  The first line of the title is printed at the top of each output page, but the 
title can be longer than one line. 
 

TITLE:  The most important model of my life; 
 

Data:  This required command gives information about the data file location, its 
format, the type of data (e.g., raw data, covariance matrix), and the number of 
groups.  By default the format is “free” or unspecified, but fixed format, in which 
columns widths are specified, can also be used.  By default, Mplus assumes you 
are reading raw data. 
 

DATA:   FILE=c:\jason\mplus\ehs1.dat; 
 

Variable:  The required variable section is used for giving the names of variables 
in the data set, selecting variables, and specifying missing data. 
 

VARIABLE:  NAMES = x1 x2 x3 x4 y1 y2 y3; 

                                                 
1 There are three additional Mplus commands:  SAVEDATA,  MONTECARLO, and PLOT which are less 
often used and I will not have time to discuss. 
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USEVARIABLES = x1 x2 x3; 
MISSING = x1-y3(-5); 
  

Define: This is an optional section that computes new variables.  It is typically not 
used, but is handy if you want to transform a variable without creating a new data 
set. Standard symbols such as +, -, *, /, ** (for exponents) can be used (a full list 
is on p. 353 of the Mplus manual). 
 

DEFINE: x1sq = x1**2; 
 
Analysis: The analysis section gives information about the type of analysis, the 
estimation method, and the type of matrix that Mplus should use in the analysis.  
The specifications I use in the example below are the defaults—a general 
structural equation model, maximum likelihood estimation, and analysis using the 
covariance matrix are requested.  
 

ANALYSIS:   
TYPE = GENERAL; ESTIMATOR = ML;  
MATRIX = COVARIANCE; 

 
Model:  The model section is where the user tells Mplus the variables and 
structure of the model to be tested.  This section contains all statements that 
specify latent variables, causal paths, and correlations.  The statements below 
illustrate the three basic statements in Mplus—BY, ON, and WITH. 
 

MODEL:   
 latent1 BY x1 x2 x3; 
 y1 ON latent1 x4; 
 latent1 WITH x4; 

 
Output:  This command requests certain information to be printed in the output 
file.  By default, not too much is needed. 
 

OUTPUT:   STANDARDIZED;   
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Data Set Preparation 
 
Mplus reads only ASCII (text) data.  This is inconvenient, but I’m going to give you some 
good tips and examples on how to prepare data sets for Mplus.  There are several 
points that are helpful to keep in mind to avoid problems reading data out of your 
statistical package and into Mplus.   
 

1.  Remember the exact location of the data file, including the full path 
specification.  I always keep folder names to a minimum, so that minor errors 
typing complex file paths don’t trip me up on the FILE statement in Mplus.   
 
2.  Make sure that the list of the variables that you read out of your statistical 
packages matches exactly the list of variables you give Mplus in the DATA 
section.  Always double check the order the variables were saved in with the 
order specified in Mplus. 
 
3.  If using free format for input, you need numerical values (asterisk or period 
are also acceptable) to designate missing data for all variables.  This means that 
system missing values must be given a discrete missing value code. 
 
4. It is good practice to open your data set to look at it to make sure it looks ok.  
You can open the file in any text editor, but I often just open it in Mplus. 

 
SPSS  
 
In SPSS, there are two ways to create the raw data files—through the menus and with 
syntax.  My preferred method is with syntax, because a) I like to keep a record of the 
data files I created, 2) I can double check the variable list to verify the variables in my 
model are the ones I intended to use, and 3) I can copy the variable names into the 
Mplus program file to save time and avoid typos, incorrectly ordered variable lists, or 
omitted variables.  
 
SPSS Using Menus.     
 

1.  file -> save as (specify location and filename and uncheck the “write variable 
names to spreadsheet” checkbox).  Make sure that under “Save as type,” you 
choose “Tab-delimited (*.dat)”.  
 
2.  click the “variables” button and check the boxes next to the variables you wish 
to save out.  Note that it is often convenient to first click the “drop all” button and 
then check the subset of variables that you desire, especially when working with 
a large data set. 
 
3.  Click “continue”.  
 
4. Click “save”. 
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SPSS Using Syntax.  The following syntax lines can be used to save the data as tab-
delimited text. I use just a simple example with four variables here.  The 
DESCRIPTIVES command issued afterwards is helpful for double checking that the N is 
the same as that used in Mplus, but it is optional. The MISSING=LISTWISE command 
is used to check the N in Mplus when listwise deletion is used (discussed later). If a 
DESCIPTIVES or other command is not used, an EXECUTE statement is needed 
following the SAVE command. 

 
RECODE program TO b3p_conf (SYSMIS=-99). 
 
MISSING VALUES program T0 b3p_conf (-99,-6 thru -1). 
 
SAVE TRANSLATE OUTFILE='c:\jason\mplus\consult\ehs\temp.dat'  
  /TYPE=TAB /MAP /REPLACE 
  /KEEP=b1p_cesd b1v3pdet  b1v3pint  b1v3pneg . 
 
DESCRIPTIVES VARS=b1p_cesd b1v3pdet  b1v3pint  b1v3pneg  
   /MISSING=LISTWISE. 

 
SAS Using Syntax.  Use of the PUT statement on the DATA step in SAS will generate 
an ASCII file.  The FILE statement is used to designate a location on the hard drive for 
the new file.  The format statement at the end, (F10.6,'09'X), tells SAS to use a column 
width of 10 with 6 decimal places for all of the variables and to separate the variables 
with tabs. The latter is needed to avoid rounding.  (I did not include any syntax here, but 
you may need to declare or recode missing values.  The default period is acceptable in 
Mplus, but you must declare it as a missing value).   
 

DATA one; SET data.ehs1; 
 
DATA _NULL_; SET work.one; 
   FILE 'c:\jason\mplus\consult\ehs\ehs1sas.dat'; 
   PUT (b1p_cesd b1v3pdet b1v3pint b1v3pneg) (F10.6,'09'X); 
RUN; 

 
Another option in SAS is to use the PROC EXPORT command, but it automatically lists 
variable names in the first line of the data file (which will cause problems in Mplus), so 
the file needs to be opened and edited to remove the names.  This method also 
requires that a FORMAT statement be used to prevent rounding. 
 

DATA one (keep=b1p_cesd b1v3pdet b1v3pint b1v3pneg); SET data.ehs1; 
 
IF MISSING(b1p_cesd) THEN b1p_cesd=-99; 
IF MISSING(b1v3pdet) THEN b1v3pdet=-99; 
IF MISSING(b1v3pint) THEN b1v3pint=-99; 
IF MISSING(b1v3pneg) THEN b1v3pneg=-99; 
 
FORMAT b1p_cesd b1v3pdet b1v3pint b1v3pneg 10.6; 
 
PROC EXPORT DATA=one OUTFILE='c:\jason\mplus\consult\ehs\temp2.dat' 
DBMS=DLM REPLACE ; 
run; 
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Example 1:  Reading Data into Mplus 
 
In Example 1 below, I read the data I created with the above examples into Mplus.   
 
If you have user-defined missing values, you can identify those in Mplus with the 
MISSING statement in the VARIABLE section.  The following are acceptable:  MISSING 
= *;  MISSING = . ;  MISSING = BLANK; MISSING = varname(#); In the last example, 
“varname” is any variable name and # is the value in the data set that indicates missing 
where you can specify multiple discrete values or a range of values. 
 
If using free format for input, as I illustrate below, you cannot use blanks to represent 
missing data in SPSS.  An asterisk, period, or numerical value must be used. 
  
The TYPE=BASIC command is not required, but generates some descriptive data 
useful for verifying that you have read the data correctly. 
 

TITLE:  Example 1, Reading in raw data; 
 
DATA:  FILE=ex1.dat; 
       FORMAT=FREE; 
 
VARIABLE:  NAMES = b1p_cesd b1v3pdet b1v3pint b1v3pneg; 
             MISSING = b1p_cesd-b1v3pneg(-99,-6--1); 
 
!  The following TYPE=BASIC command gives descriptive data 
!   and is a good idea for checking to make sure the data   
!   are read in correctly. 
 
ANALYSIS:  TYPE=BASIC; 

 
 

The path on the FILE statement can be abbreviated (e.g., FILE=ex1.dat) as long as the 
data file resides in the same folder as the input file.  Otherwise, the full path is required 
(e.g., c:\jason\mplus\ehs\ex2.dat). 
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Overview of Structural Equation Modeling 
 

• Structural equation models, sometimes called "covariance structural models," are 
a class of statistical techniques that combine elements of regression analysis and 
factor analysis. 

 
• Structural equation modeling (SEM) is a general, flexible approach that 

encompasses or extends a number of common statistical models such as 
ANOVA, regression, hierarchical linear models, reliability estimation, multivariate 
analyses. 

 
• The primary approach is one of model fitting:  detailed models are specified and 

tested for fit with the obtained data. 
 

• SEM employs a measurement orientation that posits "latent variables" 
representing constructs from which measurement error has been removed. 

 
•  Because relations among those latent variables are examined, more accurate 

estimates can be obtained 
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Path Analysis 
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Path Diagrams 
 
Beginning in 1918, Sewall Wright developed a system of decomposing sets of 
correlations into path coefficients in order to describe causal processes.  
 
As it turns out, these path coefficients are simply regression slopes that can be derived 
from more complex models.  
 
Path Diagrams  
 
A set of conventions now exists for diagramming these models. For example, the model 
below represents a two-predictor regression model. 
 
 

X1

X2

Y

 
• Straight, unidirectional arrows represent hypothesized causal relations.  
 
• Curved, double-headed arrows represent correlations among variables. 
 
• The short arrow leading into variable Y represents the residual or error term (i.e., 

the variance not accounted for by X1 and X2).  In path analysis and SEM, it is 
often referred to as a disturbance term.   

•  
• The causal flow is usually from left to right, sometimes said to be from 

"upstream" to "downstream" 
 
• Variables on the left, not caused by any other variables are referred to as 

exogenous variables.  Variables caused by other variables are referred to as 
endogenous.  

 
• The regression weights associated with each directional arrow are usually 

referred to as path coefficients. The estimate for the relationship between 
variables, whether for correlations or a causal paths are generally called 
parameters 
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Deriving Path Estimates 
 
Wright developed a set of rules for tracing through path diagrams that can be used to 
deriving path coefficients from correlations among a set of variables.  Every route 
between the two variables is traced.  The coefficients that make up each route are 
multiplied.  If there are multiple routes that link the two variables, products for each 
route are added together. 
 
Taking our original simple path diagram representing a two variable regression model, 
and assuming some values for the correlations between our three variables, we can 
derive the path coefficients using Wright’s rules.   
 

X1

X2

Y
b1

b2

r12

e

 
Assume that r12 = .50, r1Y =.65, and r2Y = .70. 
 
The correlation between any two variables is a function of the possible tracing routes 
between those two variables.  So, according to the rules 1 1 12Yr b r b2= + and .   2 2 12Yr b r= + 1b
 
We can then plug in the known values and solve for b1 and b2.  
 

1 2

2 1

.65 .50

.70 .50
b b
b b

= +
= +

 

 
by rearranging, substituting, and solving for b1 and then b2, we get b1 = .4 and b2 = .5.  
These coefficients are actually the standardized regression coefficients, β1 and β2 
because we started with a correlation matrix (i.e., standardized variables).  Starting with 
a covariance matrix (the unstandardized version of a correlation matrix), we get 
unstandardized regression coefficients. 
 
The disturbance term, e, is the amount of unaccounted for variance in Y and is equal to 

21 R− .  We know from regression analysis that 2 2 2
1 2 1 2 12R rβ β β β= + + .  So, 

.  The disturbance term then equals ( )( )2 2 2.4 .5 .5 .4 .5 .61R = + + = 1 .61 .62e  = − =
 
What we have just done is decompose the correlation matrix into unique values for the 
coefficients that are implied by the model we specified. 
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Technical Note# 1 Wright’s Rules of Tracing 
 

Wright developed a method of estimating causal path coefficients by decomposing 

the correlations among a set of variables. He articulated a set of rules for examining 

a path diagram that would allow for this mathematical decomposition.  The 

correlation of any two variables in a path diagram can be expressed as the sum of 

coefficients that connect the two variables. 

 

1)  No loops are allowed.  In tracing from one variable to another, you cannot pass 

through the same variable twice. 

 

2)  No going forward and then backward.  Once you have traveled along a path 

forward, you cannot travel backward across the path.  However, going backward and 

then forward is possible. 

 

3)  Only one curved arrow is allowed in tracing from the first variable to the last 

variable. 
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Example 2: A Two-predictor Regression in Mplus 
 

In Example 2 below, a regression analysis is specified in Mplus with parental negative 
regard (b1v3pneg) and depression (b1p_cesd) as predictors of conflict (b1p_conf).   
This introduces the Mplus model statements ON, for the dependent variable being 
regressed on an independent variable, and WITH, for correlations.   
 
(Example 2) 

 
TITLE:  Example 2, Two-predictor Regression; 
 
DATA:  FILE=c:\jason\mplus\ehs\ex2.dat; 
               FORMAT=FREE; 
 
VARIABLE:  NAMES = program mrisk3 site c_maler mage race b3p35a    
    b3p35b b3p35c b3p35d b3p35e b2p35a b2p35b b2p35c    
 b2p35d b2p35e b1pc04a b1pc04b b1pc04c b1pc04e b1pc04f    
 b1pc04g b1pc04j b1pc04k b1pc04m b1pc04n b1pc04r b1pc04t    
 b1p69a b1p69b b1p69c b1p69d b1p69e b1p_cesd b1v3pdet  
b1v3pint b1v3pneg b2v3pdet b2v3pint b2v3pneg b3v3pdet b3v3pint  
 b3v3pneg b1p_conf b2p_conf b3p_conf; 
 
    MISSING = program-b3p_conf(-99,-6--1); 
 
    USEVARIABLES=b1p_cesd b1v3pneg b1p_conf; 
 
 
ANALYSIS:   
   TYPE = GENERAL; ESTIMATOR = ML; MATRIX = COVARIANCE;  
 
 
MODEL:  b1p_conf ON b1p_cesd b1v3pneg;  
        b1p_cesd WITH b1v3pneg; 
 
OUTPUT:  STANDARDIZED; 
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Output from Example 2:  Two-predictor Regression 
 
Mplus VERSION 3.1 
MUTHEN & MUTHEN 
09/02/2004  11:07 AM 
 
INPUT INSTRUCTIONS 
 
  TITLE:  Example 2, Two-predictor Regression; 
 
  DATA:  FILE=c:\jason\mplus\ehs\ex2.dat; 
                 FORMAT=FREE; 
 
  VARIABLE:  NAMES = program mrisk3 site c_maler mage race b3p35a 
      b3p35b b3p35c b3p35d b3p35e b2p35a b2p35b b2p35c 
          b2p35d b2p35e b1pc04a b1pc04b b1pc04c b1pc04e b1pc04f 
          b1pc04g b1pc04j b1pc04k b1pc04m b1pc04n b1pc04r b1pc04t 
          b1p69a b1p69b b1p69c b1p69d b1p69e b1p_cesd b1v3pdet 
          b1v3pint b1v3pneg b2v3pdet b2v3pint b2v3pneg b3v3pdet b3v3pint 
          b3v3pneg b1p_conf b2p_conf b3p_conf; 
 
      MISSING = program-b3p_conf(-99,-6--1); 
 
      USEVARIABLES=b1p_cesd b1v3pneg b1p_conf; 
 
 
  ANALYSIS: 
     TYPE = GENERAL; ESTIMATOR = ML; MATRIX = COVARIANCE; 
 
 
  MODEL:  b1p_conf on b1p_cesd b1v3pneg; 
          b1p_cesd with b1v3pneg; 
 
  OUTPUT:  standardized; 
 
 
INPUT READING TERMINATED NORMALLY 
 
Example 2, Two-predictor Regression; 
 
SUMMARY OF ANALYSIS 
 
Number of groups                                                 1 
Number of observations                                        1593 
 
Number of dependent variables                                    1 
Number of independent variables                                  2 
Number of continuous latent variables                            0 
 
Observed dependent variables 
 
  Continuous 
   B1P_CONF 
 
Observed independent variables 
   B1P_CESD    B1V3PNEG 
 
 
Estimator                                                       ML 
Information matrix                                        EXPECTED 
Maximum number of iterations                                  1000 
Convergence criterion                                    0.500D-04 
Maximum number of steepest descent iterations                   20 
 
Input data file(s) 
  c:\jason\mplus\ehs\ex2.dat 
 
Input data format  FREE 
 
THE MODEL ESTIMATION TERMINATED NORMALLY 
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TESTS OF MODEL FIT 
 
Chi-Square Test of Model Fit 
 
          Value                              0.000 
          Degrees of Freedom                     0 
          P-Value                           0.0000 
 
Chi-Square Test of Model Fit for the Baseline Model 
 
          Value                            167.858 
          Degrees of Freedom                     2 
          P-Value                           0.0000 
 
CFI/TLI 
 
          CFI                                1.000 
          TLI                                1.000 
 
Loglikelihood 
 
          H0 Value                       -8916.266 
          H1 Value                       -8916.266 
 
Information Criteria 
 
          Number of Free Parameters              6 
          Akaike (AIC)                   17844.533 
          Bayesian (BIC)                 17876.773 
          Sample-Size Adjusted BIC       17857.712 
            (n* = (n + 2) / 24) 
 
RMSEA (Root Mean Square Error Of Approximation) 
 
          Estimate                           0.000 
          90 Percent C.I.                    0.000  0.000 
          Probability RMSEA <= .05           0.000 
 
SRMR (Standardized Root Mean Square Residual) 
 
          Value                              0.000 
 
 
MODEL RESULTS 
 
                   Estimates     S.E.  Est./S.E.    Std     StdYX 
 
 B1P_CONF ON 
    B1P_CESD           0.018    0.001     13.273    0.018    0.316 
    B1V3PNEG           0.000    0.017      0.022    0.000    0.001 
 
 B1P_CESD WITH 
    B1V3PNEG           0.504    0.188      2.675    0.504    0.067 
 
 Variances 
    B1P_CESD          93.256    3.304     28.222   93.256    1.000 
    B1V3PNEG           0.603    0.021     28.222    0.603    1.000 
 
 Residual Variances 
    B1P_CONF           0.261    0.009     28.222    0.261    0.900 
 
 
R-SQUARE 
 
    Observed 
    Variable  R-Square 
 

B1P_CONF     0.100
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Mediation 
 
Path analysis is especially useful for examining more complicated models that involve a 
causal chain of events.  A variable that intervenes between a cause and an effect 
variable is called a mediator variable.   A mediating relationship refers to a causal chain 
of events—that variable A causes variable B which, in turn, causes variable C.  (Note 
that a moderator differs, because moderation refers to the statistical interaction between 
two predictors. That is, the effect of one predictor on the outcome depends on the value 
of the other predictor). 
 
An indirect effect refers to a mediational effect; it is the effect of the predictor on the 
outcome that is due to changes in the mediator.  For example, in the following diagram, 
the indirect effect of X on Y is the extent to which X causes Y through its effects on the 
mediator, Z. 

X Y
b2

e

Z
b1

 
According to Wright’s path tracing rules, the correlation between X and Y should equal 
the product of the two path coefficients,  rXY = b1b2.  If b1 and b2 are standardized 
coefficients, then b1=rXZ and b2=rZY.  Thus, rXY should equal rXZrZY, if our path model is 
correct.   
 
Knowing this fact, we could check our data to see if there is agreement between what 
our model implies and what our data indicate.  As it turns out, this is the basis of tests of 
model fit in structural equation modeling.  The model that we test implies certain 
correlations among variables given what we know about some of the other correlations.  
If the implied correlations are very close to the obtained correlations, then there is good 
fit. 
 
In most applications, however, it is best that unstandardized information is analyzed, so 
covariances are used instead of correlations.   A covariance can be thought of as an 
unstandardized correlation—the variances of the variables are not divided out.  The chi-
square test of model fit can be thought of as an index of the discrepancy between the 
implied covariance matrix and the obtained covariance matrix. 
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Example 3: Mediation 
 
Using the same three variables as our previous example, we could test a mediational 
model, positing that depression leads to negative regard, which, in turn, leads to 
conflict. 

Depression Negative Regard Conflict
  
In Mplus, this simply requires two regression statements.  Negative regard is regressed 
on depression, and conflict is regressed on negative regard. 
 
An optional section, MODEL INDIRECT, can be added to test the indirect effect.  A 
coefficient is computed that represents the effect of depression on conflict as mediated 
through negative regard.  The unstandardized coefficient for the indirect effect 
represents the change in conflict for each unit change in depression that is mediated by 
negative regard.  The indirect coefficient is computed by multiplying the two direct path 
coefficients.  The statement b1p_conf IND b1p_cesd refers to the indirect effect of the 
CES-D on conflict. 
 

TITLE:  Example 3, Mediation Model; 
 
DATA:  FILE=c:\jason\mplus\ehs\ex2.dat; 
               FORMAT=FREE; 
 
VARIABLE:  NAMES = program mrisk3 site c_maler mage race b3p35a    
    b3p35b b3p35c b3p35d b3p35e b2p35a b2p35b b2p35c    
 b2p35d b2p35e b1pc04a b1pc04b b1pc04c b1pc04e b1pc04f    
 b1pc04g b1pc04j b1pc04k b1pc04m b1pc04n b1pc04r b1pc04t    
 b1p69a b1p69b b1p69c b1p69d b1p69e b1p_cesd b1v3pdet  
b1v3pint b1v3pneg b2v3pdet b2v3pint b2v3pneg b3v3pdet b3v3pint  
 b3v3pneg b1p_conf b2p_conf b3p_conf; 
 
    MISSING = program-b3p_conf(-99,-6--1); 
 
    USEVARIABLES=b1p_cesd b1v3pneg b1p_conf; 
 
 
ANALYSIS:   
   TYPE = GENERAL; ESTIMATOR = ML; MATRIX = COVARIANCE;  
 
 
MODEL:   b1v3pneg ON b1p_cesd ;  
         b1p_conf ON b1v3pneg; 
 
! The model indirect command is not required for this model 
! but it produces a significance test of the indirect effect. 
 
MODEL INDIRECT:  b1p_conf IND b1p_cesd;  
 
OUTPUT: STANDARDIZED; 
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Output for Example 3:  Mediation  
 
(Note: I have omitted the model syntax to save paper) 
 
INPUT READING TERMINATED NORMALLY 
 
Example 3, Mediation Model; 
 
SUMMARY OF ANALYSIS 
 
Number of groups                                                 1 
Number of observations                                        1593 
 
Number of dependent variables                                    2 
Number of independent variables                                  1 
Number of continuous latent variables                            0 
 
Observed dependent variables 
 
  Continuous 
   B1V3PNEG    B1P_CONF 
 
Observed independent variables 
   B1P_CESD 
 
Estimator                                                       ML 
Information matrix                                        EXPECTED 
Maximum number of iterations                                  1000 
Convergence criterion                                    0.500D-04 
Maximum number of steepest descent iterations                   20 
 
Input data file(s) 
  c:\jason\mplus\ehs\ex2.dat 
 
Input data format  FREE 
 
THE MODEL ESTIMATION TERMINATED NORMALLY 
 
TESTS OF MODEL FIT 
 
Chi-Square Test of Model Fit 
 
          Value                            167.103 
          Degrees of Freedom                     1 
          P-Value                           0.0000 
 
 
 
Chi-Square Test of Model Fit for the Baseline Model 
 
          Value                            175.063 
          Degrees of Freedom                     3 
          P-Value                           0.0000 
CFI/TLI 
 
          CFI                                0.035 
          TLI                               -1.896 
 
Loglikelihood 
          H0 Value                       -8999.818 
          H1 Value                       -8916.266 
 
Information Criteria 
          Number of Free Parameters              4 
          Akaike (AIC)                   18007.636 
          Bayesian (BIC)                 18029.129 
          Sample-Size Adjusted BIC       18016.422 
            (n* = (n + 2) / 24) 
 
RMSEA (Root Mean Square Error Of Approximation) 
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          Estimate                           0.323 
          90 Percent C.I.                    0.283  0.365 
          Probability RMSEA <= .05           0.000 
 
SRMR (Standardized Root Mean Square Residual) 
          Value                              0.129 
 
 
MODEL RESULTS 
                   Estimates     S.E.  Est./S.E.    Std     StdYX 
 B1V3PNEG ON 
    B1P_CESD           0.005    0.002      2.687    0.005    0.067 
 
 B1P_CONF ON 
    B1V3PNEG           0.015    0.017      0.869    0.015    0.022 
 
 Residual Variances 
    B1V3PNEG           0.600    0.021     28.222    0.600    0.995 
    B1P_CONF           0.289    0.010     28.222    0.289    1.000 
 
R-SQUARE 
    Observed 
    Variable  R-Square 
 
    B1V3PNEG     0.005 
    B1P_CONF     0.000 
TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS 
 
                   Estimates     S.E.  Est./S.E.     Std     StdYX 
 
Effects from B1P_CESD to B1P_CONF 
 
  Total                0.000    0.000      0.827    0.000    0.001 
  Total indirect       0.000    0.000      0.827    0.000    0.001 
 
  Specific indirect 
 
    B1P_CONF 
    B1V3PNEG 
    B1P_CESD           0.000    0.000      0.827    0.000    0.001 
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Confirmatory Factor Analysis 



Newsom  Page  
EHS Mplus Workshop 2004  

24

Exploratory vs. Confirmatory Factor Analysis 
Similarities 

• Exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) are 
two statistical approaches used to examine the internal reliability of a 
measure. 

 
• Both are used to investigate the theoretical constructs, or factors, that might 

be represented by a set of items. 
 
• Either can assume the factors are uncorrelated, or orthogonal. 
 
• Both are used to assess the quality of individual items. 
 
• Both can be used for exploratory or confirmatory purposes. 

 
Differences 

• With EFA, researchers usually decide on the number of factors by examining 
output from a principal components analysis (i.e., eigenvalues are used).  
With CFA, the researchers must specify the number of factors a priori. 

 
• CFA requires that a particular factor structure be specified, in which the 

researcher indicates which items load on which factor.   EFA allows all items 
to load on all factors. 

 
• CFA provides a fit of the hypothesized factor structure to the observed data. 
 
• Researchers typically use maximum likelihood to estimate factor loadings, 

whereas maximum likelihood is only one of a variety of estimators used with 
EFA. 

 
• CFA allows the researchers to specify correlated measurement errors, 

constrain loadings or factor correlations to be equal to one another, perform 
statistical comparisons of alternative models, test second-order factor models, 
and statistically compare the factor structure of two or more groups. 
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Latent Variables 
The concept of latent variables is based on classical test theory, which assumes that 
any measure is a function of two variables:  the true score and error variation.  This 
assertion can be written as a formula: 

X T E= +  
in which X represents the observed score on the measure, T is the person's true score, 
and E is error variation.  
 
In the social sciences, we attempt measure many unobservable phenomena.  The real 
variable or construct of interest is not precisely the one that is measured.  A simple 
example is the measurement of an attitude, say about statistics.  A response to a single 
items such as "Do you like statistics?" is a function of one's true attitude but also a 
function of other more transient factors such as the specific item wording, the 
respondents mood, or recent traumatic experiences with statistics.  The true score, T, is 
the actual attitude, the observed score X is the expressed attitude on the question, and 
E is any factors that impact X other than T.   
 
Notice that the classical test theory formula is also a regression formula. X is predicted 
by true score with some residual error remaining.   In SEM, latent variables are thought 
to represent true scores.  CFA models are visually represented in the following way: 
 
Latent variables are represented by ellipses, and measured variables are represented 
by square boxes. 
 

X

T

E
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Deriving Factor Loadings 

X2

E2

X3

E3

X1

E1

F1

a b c

 
We can use Wright's tracing rules to derive factor loadings.  The correlation between X1 
and X2, r12, should be equal to the product of ab, because we trace from X1 to F1 and 
back to X2.  Similarly, bc will equal the correlation between X2 and X3.  To obtain the 
factor loadings for the above model, there are three equations: 

 
12

23

13

r a
r b
r ac

b
c

=
=
=

 

As long as we have values for r12, r23, and r13, we can solve the equations for a, b, and 
c.  Thus, there will be three equations and three unknowns.  If we had just two variables 
loading on one factor, we would have two paths to estimate but only one correlation.  
That model is unsolvable. 
 
If the number of unknowns is equal to the number of equations, the model is called just 
identified.  If the number of unknowns is greater than the number of equations, the 
model is said to be underidentified, and there is no solution possible.  An overidentified 
model is one in which there are fewer unknowns than equations.  This is preferred. 
 
Generally, the number of correlations among a set of variables can be described as: 

( 1)#
2

v vcorrelations −
=  

where v is the number of variables.   One can determine if the model is identified by 
calculating whether there are more correlation elements than paths to be estimated. 
Thus, one formula for degrees of freedom for structural models is: 
 

( 1)
2

v vdf p−
= −  

 
where v is the number of measured variables in the model and p is the number of free 
parameters that need to be estimated (not including residual errors or disturbances). 
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Maximum Likelihood Estimation 
In practice, correlations are not typically used to estimate factor loadings or path 
coefficients.  The primary reason for this is that correlations use standardized variables 
and important information about the variances of the variables is lost (i.e., the variances 
of each of the variables is assumed to be 1).  It can also be shown that for many 
different factor models, use of correlations can lead to erroneous results.  Thus, 
covariances, the unstandardized version of correlations, are used.   
 
The logic of deriving estimates of the loadings remains the same.  There are a set of 
equations that describe the model (i.e., structural equations) and some known values 
about the relations among all of the variables (i.e., a matrix of covariances).  For 
complicated models, the easier way to solve the set of structural equations is through a 
calculus-based method called maximum likelihood (ML).  Maximum likelihood solves for 
the loadings by minimizing the discrepancy between the equations implied by the model 
and the obtained covariances.   This discrepancy is mathematically described as: 

( )ˆS θ− Σ  

Where S is the covariance matrix obtained from the data, and ( )ˆ θΣ  is matrix notation 
for a covariance matrix implied by the hypothesized model. 
 
Certain values for the relations among the variables are implied by certain specified 
models.  We can examine the fit of the hypothesized model to the data, by comparing 
the implied covariances to those obtained.  The ML solution is obtained by minimizing 
the following (somewhat frightening) fit function: 

( ) ( )( )1ˆ ˆlog log ( )MLF tr S Sθ θ−= Σ + Σ − − +p q  

log is the logarithm function, ( )ˆ θΣ is the covariance matrix implied by the model, S is the 
observed covariance matrix, tr is the trace matrix algebra function, and (p + q) is equal 
to the number of coefficients that need to be estimated in the model.  The superscript in 
the middle, -1, is a matrix algebra function called the inverse.2   

                                                 
2 Computer packages sometimes print an error message stating that the "inverse of sigma is not positive 
definite."  This indicates a severe problem with the model because one or more of the implied variances 
from the variance/covariance matrix is negative.   
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Fit, Chi-square, and df 
ML is an iterative process, so initial starting values (i.e., guesses) are generated by the 
computer, the discrepancy between the implied and the obtained covariance matrix is 
computed, then new guesses are entered, and so on, until the minimum possible 
discrepancy values is obtained.  Each step is called an iteration. The idea is similar to 
the idea of ordinary least squares (OLS) in regression in which the squared errors or 
residuals are minimized to obtain the best fit of the regression line to the data and the 
regression coefficients. 

FML

Possible Parameter Values

To find the minimum value of the FML discrepancy (fit) function, derivatives from calculus 
are used to draw tangent lines that correspond a point on the curve.  When the tangent 
line has a slope of zero, the minimized value of the function has been found.  The 
computer stops and generates values for the fit of the overall model and the parameter 
values.  The final value can be used in a chi-square test [χ2 = (N-1)FML].  If the fit is 
perfect, there will be no discrepancy between the implied and obtained covariances, 
and the chi-square will be zero.  A chi-square nonsignificantly different from zero 
indicates a good fit.  Significantly positive chi-squares indicate poor fit. 
 
It should be noted that most textbooks give the following formula (or a variation using p 
+ q to distinguish paths between exogenous and endogenous variables from those 
between endogenous paths).  

( )1
2

v v
df p

+
= −  

This formula is used because the number of unique variance/covariance elements 
(including the diagonal) is v(v+1).  Using this method, however, means that one must 
count the number of variances in the model when determining the value of p.  Both 
models lead to the same result. 
 



Newsom  Page  
EHS Mplus Workshop 2004  

29

Example 4: One-factor CFA 
The syntax below specifies a one-factor model for the items of the CES-D. The model 
posits that a single latent variable, depression, is the common cause of the responses 
to each of the items on the measure. 
 
To test this model, we need an additional Mplus statement, the BY statement.  BY 
stands for “measured by.”  Under the MODEL section, we need a new variable name for 
our latent variable of depression, which is listed on the left (cesd1), and we need to 
specify which items are indicators of that latent variable (items b1pc04a through 
b1pc04t), which are listed on the right. 
 
All CFAs need an arbitrary scaling constraint, and there are two ways to make that 
constraint. The first method is to choose an item and set the loading equal to 1.0, which 
I usually refer to as a “marker variable.”  Mplus chooses the first item in the list as a 
marker variable by constraining or “fixing” its loading to 1.0 (you will see this in the 
output), but any item can be used. Many prefer to use the item with the highest loading.  
 

TITLE:  Example 4, 1-factor CFA; 
 
DATA:  FILE=c:\jason\mplus\ehs\ex2.dat; 
               FORMAT=FREE; 
 
VARIABLE:  NAMES = program mrisk3 site c_maler mage race b3p35a    
    b3p35b b3p35c b3p35d b3p35e b2p35a b2p35b b2p35c    
 b2p35d b2p35e b1pc04a b1pc04b b1pc04c b1pc04e b1pc04f    
 b1pc04g b1pc04j b1pc04k b1pc04m b1pc04n b1pc04r b1pc04t    
 b1p69a b1p69b b1p69c b1p69d b1p69e b1p_cesd b1v3pdet  
b1v3pint b1v3pneg b2v3pdet b2v3pint b2v3pneg b3v3pdet b3v3pint  
 b3v3pneg b1p_conf b2p_conf b3p_conf; 
 
    MISSING = program-b3p_conf(-99,-6--1); 
 
    USEVARIABLES=b1pc04a-b1pc04t; 

 
ANALYSIS:   
   TYPE = GENERAL; ESTIMATOR = ML; MATRIX = COVARIANCE;  

 
MODEL:   cesd1 BY b1pc04a-b1pc04t; 
 
OUTPUT:  STANDARDIZED; 

 
An alternative (but equally valid) approach to the scaling constraint is to free the first  
loading (override the default) and then set the variance of the latent variable equal to 
1.0.   

cesd1 BY b1pc04a*1 b1pc04b-b1pc04t; 
cesd1@1; 

 
Listing a latent or measured variable without any other statement is a reference to the 
variance or residual variance (i.e., error term) associated with that variable.  The @ 
symbol sets the value to a specific number.  Omitting the @ symbol or using a * symbol 
tells Mplus you want the program to freely estimate that value. 
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Output for Example 4:  One-factor CFA  
 
INPUT READING TERMINATED NORMALLY 
 
Example 4, 1-factor CFA; 
 
SUMMARY OF ANALYSIS 
 
Number of groups                                                 1 
Number of observations                                        2250 
 
Number of dependent variables                                   12 
Number of independent variables                                  0 
Number of continuous latent variables                            1 
 
Observed dependent variables 
 
  Continuous 
   B1PC04A     B1PC04B     B1PC04C     B1PC04E     B1PC04F     B1PC04G 
   B1PC04J     B1PC04K     B1PC04M     B1PC04N     B1PC04R     B1PC04T 
 
Continuous latent variables 
   CESD1 
 
 
Estimator                                                       ML 
Information matrix                                        EXPECTED 
Maximum number of iterations                                  1000 
Convergence criterion                                    0.500D-04 
Maximum number of steepest descent iterations                   20 
 
Input data file(s) 
  c:\jason\mplus\ehs\ex2.dat 
 
Input data format  FREE 
 
 
 
THE MODEL ESTIMATION TERMINATED NORMALLY 
 
 
 
TESTS OF MODEL FIT 
 
Chi-Square Test of Model Fit 
 
          Value                            520.952 
          Degrees of Freedom                    54 
          P-Value                           0.0000 
 
Chi-Square Test of Model Fit for the Baseline Model 
 
          Value                           7806.940 
          Degrees of Freedom                    66 
          P-Value                           0.0000 
 
CFI/TLI 
 
          CFI                                0.940 
          TLI                                0.926 
 
Loglikelihood 
 
          H0 Value                      -32360.102 
          H1 Value                      -32099.626 
 
Information Criteria 
 
          Number of Free Parameters             24 
          Akaike (AIC)                   64768.204 
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          Bayesian (BIC)                 64905.453 
          Sample-Size Adjusted BIC       64829.201 
            (n* = (n + 2) / 24) 
 
RMSEA (Root Mean Square Error Of Approximation) 
 
          Estimate                           0.062 
          90 Percent C.I.                    0.057  0.067 
          Probability RMSEA <= .05           0.000 
 
SRMR (Standardized Root Mean Square Residual) 
 
          Value                              0.037 
 
 
 
MODEL RESULTS 
 
                   Estimates     S.E.  Est./S.E.    Std     StdYX 
 
 CESD1    BY 
    B1PC04A            1.000    0.000      0.000    0.505    0.594 
    B1PC04B            0.788    0.044     17.954    0.398    0.437 
    B1PC04C            1.168    0.045     25.886    0.590    0.700 
    B1PC04E            1.005    0.049     20.674    0.508    0.518 
    B1PC04F            1.410    0.051     27.673    0.712    0.775 
    B1PC04G            0.740    0.054     13.825    0.374    0.325 
    B1PC04J            0.834    0.038     21.809    0.421    0.554 
    B1PC04K            1.031    0.051     20.079    0.521    0.499 
    B1PC04M            0.813    0.043     18.733    0.410    0.459 
    B1PC04N            1.234    0.049     25.072    0.623    0.668 
    B1PC04R            1.301    0.048     27.291    0.657    0.758 
    B1PC04T            1.015    0.047     21.765    0.512    0.553 
 
 Variances 
    CESD1              0.255    0.017     14.672    1.000    1.000 
 
 Residual Variances 
    B1PC04A            0.467    0.015     31.042    0.467    0.647 
    B1PC04B            0.672    0.021     32.465    0.672    0.809 
    B1PC04C            0.363    0.012     29.133    0.363    0.511 
    B1PC04E            0.703    0.022     31.867    0.703    0.732 
    B1PC04F            0.337    0.013     26.599    0.337    0.399 
    B1PC04G            1.183    0.036     33.003    1.183    0.894 
    B1PC04J            0.401    0.013     31.516    0.401    0.693 
    B1PC04K            0.816    0.025     32.023    0.816    0.751 
    B1PC04M            0.630    0.019     32.321    0.630    0.789 
    B1PC04N            0.481    0.016     29.839    0.481    0.554 
    B1PC04R            0.319    0.012     27.312    0.319    0.425 
    B1PC04T            0.597    0.019     31.531    0.597    0.695 
 
 
R-SQUARE 
 
    Observed 
    Variable  R-Square 
 
    B1PC04A      0.353 
    B1PC04B      0.191 
    B1PC04C      0.489 
    B1PC04E      0.268 
    B1PC04F      0.601 
    B1PC04G      0.106 
    B1PC04J      0.307 
    B1PC04K      0.249 
    B1PC04M      0.211 
    B1PC04N      0.446 
    B1PC04R      0.575 
    B1PC04T      0.305  
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Alternative Fit Indices 
Although chi-square is nearly always reported, it has a number of serious problems as a 
measure of overall model fit.   
 

• Sensitive to sample size.  Larger samples increase power of chi-square 
leading the researcher to reject models that might be good. 

 
• Sensitive to model complexity.  Larger models will tend to be rejected. 

 
• Sensitive to violations of multivariate normality assumption.  Models with 

highly skewed or kurtotic variables will tend to be rejected. 
 
In response to some of the problems with chi-square, statisticians have developed a 
plethora of alternative fit indices.  The article by Tanaka (1993) is a good review of the 
basic fit indices, their rationales, and how to interpret them, and more information is 
available in Technical Note # 2.   
 
Recent work by Hu and Bentler (1999) has been influential in narrowing down the 
choice of fit indices.  Based on their simulation work examining appropriate cutoffs for fit 
indices, they make the following recommendations: 
 

• Use the Comparative Fit Index (CFI; Bentler, 1990) or the Incremental Fit Index 
(IFI; Bollen, 1989) in conjunction with the standardized root mean square residual 
(SRMR; Bentler, 1995) or the root mean square error of approximation (RMSEA, 
Steiger & Lind, 1980).   

 
• The following cutoffs for these indices are optimal for minimizing false rejection 

and acceptance:  CFI or IFI—a good fit > .95, SRMR—good fit < .08, and 
RMSEA—good fit < .06.3 

                                                 
3 Steiger previously recommended < .05 as the critical value for RMSEA and Mplus prints confidence 
intervals and a significance test of whether the sample estimate is less than .05 in the population.   
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Technical Note # 2 Some Clarifications and Recommendations on Fit Indices 
 
 
Tanaka (1993), Maruyama (1998), and others distinguish between several types of fit 
indices:  absolute fit indices, relative fit indices, parsimony fit indices, and those based 
on the noncentrality parameter. 
 
Absolute Fit Indices (χ2, GFI, AGFI, Hoelter’s CN, AIC, BIC, ECVI)  
 
Absolute fit indices do not use an alternative model as a base for comparison.  They are 
simply derived from the fit of the obtained and implied covariance matrices and the ML 
minimization function.  Chi-square (χ2, sometimes referred to as T) is the original fit 
index for structural models because it is derived directly from the fit function [fML(N-1)].  
 
Chi-square is not a very good fit index in practice under many situations because it is 
affected by the following factors (1) sample size:  larger samples produce larger chi-
squares that are more likely to be significant (Type I error).  Small samples may be too 
likely to accept poor models (Type II error). Based on my experience, it is difficult to get 
a nonsignificant chi-square when samples sizes are much over 200 or so, even when 
other indices suggest a decent fitting model.   (2)  model size also has an increasing 
effect on chi-square values.  Models with more variables and more complicated models 
tend to have larger chi-squares.  (3)  Chi-square is affected by the distribution of 
variables.  Highly skewed and kurtotic variables increase chi-square values. This has to 
do with the multivariate normality assumption that we will discuss later in the class.   
 
There are several other indices that fall into the category of absolute indices, including 
the Goodness-of-fit index (GFI, also known as gamma-hat or γ̂ ), the adjusted goodness 
of fit index (AGFI), χ2/df ratio, Hoelter’s CN (“critical N”), Akaike’s Information Criterion 
(AIC), the Bayesian Information Criterion (BIC), the Expected Cross-validation Index 
(ECVI), the root mean square residual (RMR), and the standardized root mean square 
residual (SRMR).  Most of these indices, with the possible exception of the SRMR, have 
similar problems to those of the chi-square, because they are based on simple 
variations on chi-square.  As one example, the AIC (as given by Tanaka, 1993) 
is 2 2( )pχ + , where p is the number of free parameters (the number counted in 
calculating df). 
 
Relative Fit Indices (IFI, TLI, NFI) 
Relative fit indices compare a chi-square for the model tested to one from a so-called 
null model (also called a “baseline” model or “independence” model).  The null model is 
a model tested that specifies that all measured variables are uncorrelated (there are no 
latent variables).  The null model should always have a very large chi-square (poor fit).  
Although other baseline models could be used, this is not often seen in practice.4  There 

                                                 
4 Mplus version 3.11 uses a slightly modified null model in which any correlations among exogenous variables that 
are estimated in the hypothesized model are also estimated in the null model.  This adjusts the df downward for the 
null (baseline) model and has the effect of lowering the relative fit index values (IFI, TLI, NFI, as well as the CFI).  
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are several relative fit indices (which are not explicitly designed to be provide penalties 
for parsimonious models), including Bollen’s Incremental Fit Index (IFI, also called BL89 
or ∆2), the Tucker-Lewis Index [TLI, Bentler-Bonett Nonnormed Fit Index (NFI or 
BBNFI), or ρ2], and the Bentler-Bonett Normed Fit Index (NFI).  Most of these fit indices 
are computed by using ratios of the model chi-square and the null model chi-square and 
dfs for the models.  All of them have values that range between approximately 0 and 
1.0.  Some of these indices are “normed” so that their values cannot be below 0 or 
above 1 (e.g., NFI, CFI described below).  Others are considered “nonnormed” 
because, on occasion, they may be larger than 1 or slightly below 0 (e.g., TLI, IFI).  In 
the past, these indexes have generally been used with a conventional cutoff in which 
values larger than .90 are considered good fitting models. 
 
Parsimonious Fit Indices (PGFI, PNFI, PNFI2, PCFI) 
These fit indices are relative fit indices that are adjustments to most of the ones above.  
The adjustments are to penalize models that are less parsimonious, so that simpler 
theoretical processes are favored over more complex ones.  The more complex the 
model, the lower the fit index.  Parsimonious fit indices include PGFI (based on the 
GFI), PNFI (based on the NFI), PNFI2 (based on Bollen’s IFI), PCFI (based on the CFI 
mentioned below).  Mulaik et al. (1989) developed a number of these.  Although many 
researchers believe that parsimony adjustments are important, there is some debate 
about whether or not they are appropriate.  My own perspective is that researchers 
should evaluate model fit independent of parsimony considerations, but evaluate 
alternative theories favoring parsimony. With that approach, we would not penalize 
models for having more parameters, but if simpler alternative models fit equally well, we 
might want to favor the simpler model.   
 
Noncentrality-based Indices (RMSEA, CFI, RNI, CI) 
The concept of the noncentrality parameter is a somewhat difficult one.  The rationale 
for the noncentrality parameter is that our usual chi-square fit is based on a test of the 
null hypothesis is true (χ2=0). This gives a distribution of the “central” chis-square.  
Because our we are hoping to reject the null hypothesis, it can be argued that we 
should be testing to reject the alternative hypothesis (Ha).  Therefore, we should be 
conducting tests taking into account the noncentral chi-square distribution created under 
the case when Ha is true and thus the noncentral chi-square representing a model that 
is actually incorrect in the population.  The estimate of what is the best possible fit for 
this incorrect model is based on the df for the model being tested. So, a model with a df 
of 2 would have a perfect fit if the chi-square equaled 2 under this rationale (rather than 
0 as before).  Thus, the noncentrality parameter is calculated by subtracting the df of the 
model from the chi-square ( ).  Usually this value is adjusted for sample size and 2 dfχ −
referred to as the rescaled noncentrality parameter: 

2

1
dfd

N
χ −

=
−

 

                                                                                                                                                             
In models with few exogenous variables, this will probably have a minor effect, but the incremental fit values may 
be substantially lower in models with more exogenous variables.  
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A population version is usually referred to as δ and is computed by dividing by N rather 
than N-1.  Noncentrality-based indices include the Root Mean Square Error of 
Approximation (RMSEA)—not to be confused with RMR or SRMR, Bentler’s 
Comparative Fit Index (CFI), McDonald and Marsh’s Relative Noncentrality Index (RNI), 
and McDonald’s Centrality Index (CI).  Because the noncentrality parameter is simply a 
function of chi-square, df, and N, several of the formulas for the relative fit indices 
described above can be algebraically manipulated to include the noncentrality 
parameter.  For example the TLI can also be presented as: 

( ) ( )0 0

0 0

/ /
/

model modeld df d df
TLI

d df
−

=  

Where dmodel and dfmodel are the noncentrality parameter and the degrees of freedom for 
the model tested and d0 and df0 are the noncentrality parameter for the null model.  A 
recent article by Raykov (2000) shows that noncentrality parameter sample estimates 
are biased and that this problem may affect fit indices computed based on noncentrality.   
 
Sample Size Independence 
Many of the relative fit indices (and the noncentrality fit indices) are affected by sample 
size, so that larger samples are seen as better fitting (i.e., have a higher fit index value). 
Bollen (1990) made a very useful distinction between fit indices that can be shown to 
explicitly include N in their calculation and those that are dependent on sample size 
empirically. That is, even though a fit index may not include N in the formula, or even 
attempt to adjust for it, does not mean that the fit index will really turn out to be 
independent of sample size.  He also showed that the TLI and IFI are relatively 
unaffected by sample size (see also Anderson & Gerbing, 1993; Hu & Bentler, 1995; 
Marsh, Balla, & McDonald, 1988).  This is the basis for why I tend to favor these two 
indices.   

2 2

2

/ /
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df dfTLI
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=
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If you are interested in adjusting for parsimony, you might consider the Mulaik et al.’s 
PNFI2 which is a parsimony adjusted version of the IFI.  One can make a similar 
argument about parsimony adjustment. There may be an important distinction between 
fit indices that are explicitly adjusting for parsimony and ones that are empirically 
affected by model complexity.  The TLI is a example of an index that adjusts for 
parsimony, even though that was not its original intent. 
 
Recommendations 
Every researcher and every statistician seems to have a favorite index or set of indices.  
You should be prepared for reviewers to suggest the addition of one or two of their 
favorite indices, but it would not be fair to yourself or others to pick the index that is 
most optimistic about the fit of your model.  In recent years, there has been concern that 
the recommended cutoff values for relative fit indices of .90 are too low and that higher 
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values, such as .95 should be used.  Hu and Bentler (1999) empirically examine various 
cutoffs for many of these measures, and there data suggest that to minimize Type I and 
Type II errors under various conditions, one should use a combination of one of the 
above relative fit indexes and the SRMR (good models < .08).  These values should not 
be written in stone, but I believe this is useful work and hope it will helpful for 
establishing a more concrete basis for conventional cutoff values in the future.  Based 
on the IFI’s and TLI’s independence of sample size and the data from Hu and Bentler, I 
expect to report the IFI and/or the TLI in combination with the SRMR in my work.  
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Example 5:  Two-factor CFA 
The CES-D has been shown to be a multifactor scale, with the full 20-item comprised of 
three or four factors (i.e., negative affect, positive affect, somatic symptoms, 
interpersonal symptoms).  The 12-item scale used in the EHS has items from two 
factors—the negative affect and the somatic symptom factors.  So, a two-factor CFA 
may show a better fit with the data.  In Mplus, here is how a two-factor scale would be 
specified: 

 
TITLE:  Example 5, 2-factor CFA; 
 
DATA:  FILE=c:\jason\mplus\ehs\ex2.dat; 
               FORMAT=FREE; 
 
VARIABLE:  NAMES = program mrisk3 site c_maler mage race b3p35a    
    b3p35b b3p35c b3p35d b3p35e b2p35a b2p35b b2p35c    
 b2p35d b2p35e b1pc04a b1pc04b b1pc04c b1pc04e b1pc04f    
 b1pc04g b1pc04j b1pc04k b1pc04m b1pc04n b1pc04r b1pc04t    
 b1p69a b1p69b b1p69c b1p69d b1p69e b1p_cesd b1v3pdet  
b1v3pint b1v3pneg b2v3pdet b2v3pint b2v3pneg b3v3pdet b3v3pint  
 b3v3pneg b1p_conf b2p_conf b3p_conf; 
 
    MISSING = program-b3p_conf(-99,-6--1); 
 
    USEVARIABLES=b1pc04a-b1pc04t; 
 
 
ANALYSIS:   
   TYPE = GENERAL; ESTIMATOR = ML; MATRIX = COVARIANCE;  
 
 
MODEL:   cesd1som BY b1pc04a b1pc04b b1pc04e b1pc04g b1pc04k  
                   b1pc04m b1pc04t; 
         cesd1neg BY b1pc04c b1pc04f b1pc04j b1pc04n b1pc04r; 
         cesd1som WITH cesd1neg; 
 
OUTPUT:  STANDARDIZED; 
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Output for Example 5:  Two-factor CFA  
INPUT READING TERMINATED NORMALLY 
 
Example 5, 2-factor CFA; 
 
SUMMARY OF ANALYSIS 
 
Number of groups                                                 1 
Number of observations                                        2250 
 
Number of dependent variables                                   12 
Number of independent variables                                  0 
Number of continuous latent variables                            2 
 
Observed dependent variables 
 
  Continuous 
   B1PC04A     B1PC04B     B1PC04C     B1PC04E     B1PC04F     B1PC04G 
   B1PC04J     B1PC04K     B1PC04M     B1PC04N     B1PC04R     B1PC04T 
 
Continuous latent variables 
   CESD1SOM    CESD1NEG 
 
 
Estimator                                                       ML 
Information matrix                                        EXPECTED 
Maximum number of iterations                                  1000 
Convergence criterion                                    0.500D-04 
Maximum number of steepest descent iterations                   20 
 
Input data file(s) 
  c:\jason\mplus\ehs\ex2.dat 
 
Input data format  FREE 
 
THE MODEL ESTIMATION TERMINATED NORMALLY 
 
TESTS OF MODEL FIT 
 
Chi-Square Test of Model Fit 
 
          Value                            315.134 
          Degrees of Freedom                    53 
          P-Value                           0.0000 
 
 
 
Chi-Square Test of Model Fit for the Baseline Model 
 
          Value                           7806.940 
          Degrees of Freedom                    66 
          P-Value                           0.0000 
 
CFI/TLI 
 
          CFI                                0.966 
          TLI                                0.958 
 
Loglikelihood 
 
          H0 Value                      -32257.193 
          H1 Value                      -32099.626 
 
Information Criteria 
 
          Number of Free Parameters             25 
          Akaike (AIC)                   64564.386 
          Bayesian (BIC)                 64707.353 
          Sample-Size Adjusted BIC       64627.924 
            (n* = (n + 2) / 24) 
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RMSEA (Root Mean Square Error Of Approximation) 
 
          Estimate                           0.047 
          90 Percent C.I.                    0.042  0.052 
          Probability RMSEA <= .05           0.841 
 
SRMR (Standardized Root Mean Square Residual) 
 
          Value                              0.029 
 
MODEL RESULTS 
 
                   Estimates     S.E.  Est./S.E.    Std     StdYX 
 
 CESD1SOM BY 
    B1PC04A            1.000    0.000      0.000    0.528    0.621 
    B1PC04B            0.828    0.044     18.903    0.437    0.480 
    B1PC04E            1.048    0.049     21.580    0.553    0.565 
    B1PC04G            0.759    0.053     14.265    0.401    0.348 
    B1PC04K            1.100    0.052     21.344    0.581    0.557 
    B1PC04M            0.793    0.043     18.537    0.419    0.469 
    B1PC04T            1.068    0.047     22.842    0.564    0.608 
 
  
CESD1NEG BY 
    B1PC04C            1.000    0.000      0.000    0.589    0.699 
    B1PC04F            1.247    0.037     33.496    0.734    0.799 
    B1PC04J            0.720    0.030     24.128    0.424    0.557 
    B1PC04N            1.073    0.037     28.990    0.632    0.678 
    B1PC04R            1.146    0.035     32.792    0.675    0.779 
 
 CESD1SOM WITH 
    CESD1NEG           0.265    0.014     19.579    0.852    0.852 
 
 Variances 
    CESD1SOM           0.279    0.019     14.833    1.000    1.000 
    CESD1NEG           0.347    0.019     17.925    1.000    1.000 
 
 Residual Variances 
    B1PC04A            0.443    0.015     28.672    0.443    0.614 
    B1PC04B            0.639    0.020     31.259    0.639    0.770 
    B1PC04C            0.364    0.013     28.693    0.364    0.512 
    B1PC04E            0.654    0.022     29.944    0.654    0.681 
    B1PC04F            0.305    0.012     24.463    0.305    0.361 
    B1PC04G            1.162    0.036     32.495    1.162    0.879 
    B1PC04J            0.399    0.013     31.272    0.399    0.689 
    B1PC04K            0.750    0.025     30.090    0.750    0.690 
    B1PC04M            0.623    0.020     31.394    0.623    0.780 
    B1PC04N            0.470    0.016     29.227    0.470    0.541 
    B1PC04R            0.295    0.012     25.635    0.295    0.394 
    B1PC04T            0.542    0.019     29.007    0.542    0.630 
 
 
R-SQUARE 
 
    Observed 
    Variable  R-Square 
 
    B1PC04A      0.386 
    B1PC04B      0.230 
    B1PC04C      0.488 
    B1PC04E      0.319 
    B1PC04F      0.639 
    B1PC04G      0.121 
    B1PC04J      0.311 
    B1PC04K      0.310 
    B1PC04M      0.220 
    B1PC04N      0.459 
    B1PC04R      0.606 
    B1PC04T      0.370  
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Nested Models & Chi-square Difference Tests 
 

• It is often recommended that researchers compare the fit of their model to 
alternative models.   

 
• A chi-square difference test can be conducted using chi-square values and 

degrees of freedom from any two nested models.   
 

• Nested models are models that use the same variables but specify at least one 
different parameter (e.g., comparing a one-factor to a two-factor model). 

 
• For a model to be nested, all of the same measured variables and the same 

cases must be used.  There are some cases where a model is not nested even 
though both of these conditions are met (see Rigdon, 1995) 

 
• The chi-square test is simply the difference between the original model and the 

nested model, using the difference in degrees of freedom as the degrees of 
freedom for the test.   

 
Example 
In Example 4, the one-factor CFA of the CES-D scale, the chi-square value was 
520.952 with 54 degrees of freedom.  One can test whether the two-factor model fits 
significantly better.  The chi-square for the two-factor model was 315.134 with 53 df.  
Notice that the only difference between the two models is that one more parameter is 
being estimated, namely the correlation between the two factors.   
 

2 2 2

520.952 315.134
205.818

diff nestedχ χ χ= −

= −
=

 

 

54 53
1

diff nesteddf df df= −

= −
=

 

 
The critical value for chi-square difference value with 1 df is 3.84, so the two-factor 
model fits significantly better than the one-factor model. 
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 Model Modification and Modification Indices 
 
Modification indices, which can be requested in Mplus and from most computer 
packages, are one degree of freedom chi-square tests of the addition of a new 
parameter or the deletion of a parameter (in EQS these tests are called Lagrange 
multiplier and Wald tests).  Each modification index represents the change in the overall 
chi-square for the fit of the model if that particular parameter is changed.  Thus, a 
significant chi-square value (greater than 3.84) will significantly improve the fit of the 
model.  Some packages also will print the expected change in a parameter, 
representing what the unstandardized or standardized value of the added or deleted 
path would be. 
 
A few comments on modification indices:  
 

• Model modifications are subject Type I errors, so most researchers do not 
recommend making changes in a model that are not theoretically sensible. 

 
• Many modifications to a model are considered exploratory and can lead to 

development of incorrect models. 
 

• Modification indices can be an important source of information about whether a 
given model can be improved beyond a certain point.  Fit index cutoffs are useful, 
but comparisons to alternative models and evaluation of theoretically sensible 
modifications to a model are also essential to evaluating models.  

 
• Because chi-square tests (including chi-square difference tests) are sensitive to 

sample size, large samples may produce many significant modification indices.  It 
is generally impractical and unreasonable change or even consider changing all 
significant MIs.  MI values should be evaluated in relationship to the magnitude of 
the change in the overall model chi-square (I often approximate the percentage 
change in the overall chi-square). 

 
• Modifications will not provide information about major changes that are needed 

(e.g., whether a one vs. two-factor model is appropriate) 
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Example 6:  Modification Indices 
In Mplus, the addition of one statement under the OUTPUT command, MODINDICES, 
will produce modification indices in the output.  The default minimum modification index 
value is 10, but this can be overridden. Because a 1-df chi-square is significant at 3.84, I 
often use this as the minimum value.  I modified the OUTPUT command from Example 
5, in the following way: 
 

OUTPUT:  STANDARDIZED MODINDICES(3.84); 
 
The output looks exactly the same as that from Example 5, but the following information 
is appended. 
 

MODEL MODIFICATION INDICES 
 
Minimum M.I. value for printing the modification index     3.840 
 
                            M.I.     E.P.C.  Std E.P.C.  StdYX E.P.C. 
BY Statements 
 
CESD1SOM BY B1PC04C        34.798     0.521      0.275        0.326 
CESD1SOM BY B1PC04F        17.453    -0.393     -0.208       -0.226 
CESD1SOM BY B1PC04J         4.354     0.178      0.094        0.124 
CESD1SOM BY B1PC04R         6.801    -0.231     -0.122       -0.141 
CESD1NEG BY B1PC04A        24.649     0.461      0.272        0.320 
CESD1NEG BY B1PC04B         4.748    -0.213     -0.125       -0.138 
CESD1NEG BY B1PC04K        14.616    -0.429     -0.253       -0.242 
CESD1NEG BY B1PC04M        21.008     0.440      0.259        0.290 
CESD1NEG BY B1PC04T         5.374    -0.234     -0.138       -0.149 
 
WITH Statements 
 
B1PC04C  WITH B1PC04A      21.793     0.046      0.046        0.064 
B1PC04C  WITH B1PC04B      21.189     0.052      0.052        0.068 
B1PC04F  WITH B1PC04B      14.789    -0.043     -0.043       -0.051 
B1PC04F  WITH B1PC04C      10.832     0.033      0.033        0.042 
B1PC04F  WITH B1PC04E       7.997     0.033      0.033        0.036 
B1PC04J  WITH B1PC04C      10.819    -0.030     -0.030       -0.047 
B1PC04K  WITH B1PC04A      11.386    -0.049     -0.049       -0.055 
B1PC04K  WITH B1PC04B      28.628     0.087      0.087        0.091 
B1PC04K  WITH B1PC04C       4.291    -0.026     -0.026       -0.029 
B1PC04K  WITH B1PC04F       8.227    -0.035     -0.035       -0.037 
B1PC04M  WITH B1PC04C      11.978     0.038      0.038        0.051 
B1PC04M  WITH B1PC04E       4.731    -0.032     -0.032       -0.037 
B1PC04N  WITH B1PC04C      20.177    -0.047     -0.047       -0.060 
B1PC04N  WITH B1PC04M      47.280     0.086      0.086        0.103 
B1PC04R  WITH B1PC04C       9.071    -0.028     -0.028       -0.039 
B1PC04R  WITH B1PC04E       8.768    -0.033     -0.033       -0.039 
B1PC04R  WITH B1PC04M       6.479    -0.027     -0.027       -0.035 
B1PC04R  WITH B1PC04N       9.606     0.032      0.032        0.040 
B1PC04T  WITH B1PC04A      16.486    -0.051     -0.051       -0.065 
B1PC04T  WITH B1PC04E      13.826     0.055      0.055        0.060 
B1PC04T  WITH B1PC04K      32.979     0.091      0.091        0.094 
B1PC04T  WITH B1PC04M       8.783    -0.041     -0.041       -0.050 

 
The first column gives the change in chi-square for each modification to the model. The 
first set of results, under “BY Statements” are for adding loadings that were assumed to 
be zero in the model (i.e., cross-loadings onto the other factor).  The second set of MIs 
are for correlated measurement errors that could be added that would significantly 
improve the fit.  E.P.C. stands for “expected parameter change” and provides the value 
of the parameter if added.  Unstandardized values are given under the E.P.C. column 
and standardized values are found under the StdXY E.P.C. column. 
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Correlated Errors 
 
Typically, researchers begin testing a confirmatory factor model by assuming that 
measurement errors are independent of one another. This assumption implies that the 
variance of a particular item not caused by the factor has a source that is unique to that 
particular variable.  This assumption is not always valid, so researchers may incorporate 
correlated errors in a factor model.   
 
 
Inclusion of the correlation will decrease the loadings for the items involved if the 
correlation is positive.  The following figure graphically illustrates a correlation between 
errors for items 3 and 4.  The basis for including a correlation between measurement 
errors can be data driven or theoretically driven. 
 

X2 X3X1

F1

X4

 
• Researchers frequently incorporate one or two correlated errors because 

modification indices suggest an important improvement in fit of the model.  In 
such instances, correlated errors are often due to similar item wording or content 
(e.g., “I feel blue whenever my spouse is around” and “I feel sad whenever my 
spouse is around”).  

 
• Correlated errors are often used in longitudinal designs in which the same item is 

asked twice.  In this case, parallel items across factors are allowed to correlate.  
When they are not included under these circumstances, predictive paths across 
time may be inflated. 

 
• Correlated errors may be used to account for methods effects (e.g., telephone 

interviews and face to face interviews).    
 
In Example 6 above, the largest modification index was for b1pc04n (felt lonely) WITH 
b1pc04m (talked less) and would improve the chi-square value by 47.280, 
approximately 15% improvement in the overall chi-square value of the model.  To make 
this change, we would simply add the statement b1pc04n WITH b1pc04m to the 
MODEL command. 
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Full Structural Equation Models 
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Overview 
 

• In practice, most structural models are more complex and include latent variables 
and predictive paths.  

 
• Any combination of measured variables and latent variables can be used.  The 

portion of the model involving the latent variables is often referred to as the 
measurement model.  The predictive path model portions are referred to as the 
causal or structural portion of the model.  

 
• A general two-step approach is often recommended in which the measurement 

portion is tested and improved until and adequate fit is achieved.  Then the full 
structural model is tested. 

 
• The complexity of the model tested is entirely up to the researcher barring 

limitations of the data.  Instead of one mediator variable, the researcher can 
include four mediators if theory dictates.   

 
• A major advantage to full structural equation models is the ability to incorporate 

latent variables in the model.  Using latent variables instead of measured 
variables for predictive relationships is important because measurement error 
attenuates relationships.   

 
o With simple bivariate relationships, associations between two measured 

variables (e.g., a composite index), can be substantially weaker than the 
association between to latent variables, depending on the reliability of the 
index.  

 
o With more complex relationships, in which covariates are involved, the 

attenuation problem can lead to overestimation of some predictive paths.   
 
o In the figures below, assume X1 and X2 are composite indexes made up of 

several items, and Eta1 and Eta2 are latent variables constructed with the 
same items.  If X1 is not perfectly reliable, path b2 will be overestimated. b1* 
and b2* will be more accurately estimated, because latent measurement error 
is removed from the model. 

 
Fig 1a 

 
Fig 1b
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Predictor Intercorrelation & Correlated Disturbances 
 
It is fairly common practice to allow exogenous variables to correlate with one another.  
If a correlation between two predictor variables is not included, the researcher assumes 
that the correlation between those variables is zero.   

Y1

F2

F1

 
The above figure illustrates a correlation between the two exogenous variables, F1 and 
F2.  If this correlation is greater than zero (positive), but the researcher does not specify 
it should be estimated (i.e., it is set to zero), the predictive paths from F1 and F2 to Y1 
will simply reflect the zero-order correlation between the predictors and the outcome.   
 
For endogenous variables, one cannot estimate a correlation between variables—only 
between their disturbances.  Correlations between disturbances are fairly common in 
practice.  Such correlations represent a common source of error variation affecting both 
dependent variables.  Fit can be substantially affected if there is residual correlation 
between the two endogenous variables, but that correlation is not estimated. 

Y1

F1

Y2

 
In Mplus, any two variables, measurement errors, or disturbances can be correlated by 
using a WITH statement.  By default, exogenous variables are correlated, measurement 
errors are uncorrelated, and endogenous disturbances are correlated.  I have noticed 
that Mplus often does not report these correlations in the output if they are the default 
(even though Mplus is estimating them). I recommend adding these statements in the 
model so you know they are there when you look back at the model at a future point, 
and so that you can see their estimated values in the output. 
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Full SEM Example 
 

The following is an example of a full structural model with the two CES-D factors as 
predictors of parental detachment (b1v3pdet), intrusiveness (b1v3pint), and negative  
regard (b1v3pneg) at 14 months.  I have added mother’s age (mage) and race as 
covariates (race).   
 
Because race is a nominal variable with four categories (1=White, 2=Black, 3=Hispanic, 
4=Other), dummy variables are needed to represent several categories.  In the example 
below, I illustrate the use of the DEFINE command in Mplus to create two dummy 
variables called “black” and “hisp” (the other category is combined with the White 
category). 
 
The following figure illustrates the structural portion of the model: 
 
 

cesdsom

cesdneg

b1v3pdet

b1v3pint

b1v3pneg

mage

black

hisp
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Example 7:  Full Structural Equation Model 
 
INPUT INSTRUCTIONS 
 
  TITLE:  Example 7, full SEM; 
 
  DATA:  FILE=c:\jason\mplus\ehs\ex2.dat; 
                 FORMAT=FREE; 
 
  VARIABLE:  NAMES = program mrisk3 site c_maler mage race b3p35a 
      b3p35b b3p35c b3p35d b3p35e b2p35a b2p35b b2p35c 
          b2p35d b2p35e b1pc04a b1pc04b b1pc04c b1pc04e b1pc04f 
          b1pc04g b1pc04j b1pc04k b1pc04m b1pc04n b1pc04r b1pc04t 
          b1p69a b1p69b b1p69c b1p69d b1p69e b1p_cesd b1v3pdet 
          b1v3pint b1v3pneg b2v3pdet b2v3pint b2v3pneg b3v3pdet b3v3pint 
          b3v3pneg b1p_conf b2p_conf b3p_conf; 
 
      MISSING = program-b3p_conf(-99,-6--1); 
 
      USEVARIABLES=b1pc04a-b1pc04t b1v3pdet b1v3pint b1v3pneg 
               mage black hisp; 
 
  DEFINE:  IF (race EQ 1 OR race GE 3) THEN black = 0; 
           IF (race EQ 2) THEN black = 1; 
           IF (race EQ 1 OR race EQ 2 OR race EQ 4) THEN hisp = 0; 
           IF (race EQ 3) THEN hisp = 1; 
 
  ANALYSIS: 
          TYPE = GENERAL; ESTIMATOR = ML; MATRIX = COVARIANCE; 
 
  MODEL:  cesd1som BY b1pc04a b1pc04b b1pc04e b1pc04g b1pc04k 
                     b1pc04m b1pc04t; 
          cesd1neg BY b1pc04c b1pc04f b1pc04j b1pc04n b1pc04r; 
          b1v3pdet b1v3pint b1v3pneg ON cesd1som cesd1neg 
                    mage black hisp; 
          cesd1som with cesd1neg mage black hisp; 
          cesd1neg with mage black hisp; 
          mage with black hisp; 
          black with hisp; 
          b1v3pdet with b1v3pint b1v3pneg; 
          b1v3pint with b1v3pneg; 
 
  OUTPUT:  STANDARDIZED; 
 
 
 
INPUT READING TERMINATED NORMALLY 
 
 
 
Example 7, full SEM; 
 
SUMMARY OF ANALYSIS 
 
Number of groups                                                 1 
Number of observations                                        1832 
 
Number of dependent variables                                   15 
Number of independent variables                                  3 
Number of continuous latent variables                            2 
 
Observed dependent variables 
 
  Continuous 
   B1PC04A     B1PC04B     B1PC04C     B1PC04E     B1PC04F     B1PC04G 
   B1PC04J     B1PC04K     B1PC04M     B1PC04N     B1PC04R     B1PC04T 
   B1V3PDET    B1V3PINT    B1V3PNEG 
 
Observed independent variables 
   MAGE        BLACK       HISP 
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Continuous latent variables 
   CESD1SOM    CESD1NEG 
 
 
Estimator                                                       ML 
Information matrix                                        EXPECTED 
Maximum number of iterations                                  1000 
Convergence criterion                                    0.500D-04 
Maximum number of steepest descent iterations                   20 
 
Input data file(s) 
  c:\jason\mplus\ehs\ex2.dat 
 
Input data format  FREE 
 
 
 
THE MODEL ESTIMATION TERMINATED NORMALLY 
 
 
 
TESTS OF MODEL FIT 
 
Chi-Square Test of Model Fit 
 
          Value                            551.587 
          Degrees of Freedom                   113 
          P-Value                           0.0000 
 
Chi-Square Test of Model Fit for the Baseline Model 
 
          Value                           7580.111 
          Degrees of Freedom                   150 
          P-Value                           0.0000 
 
CFI/TLI 
 
          CFI                                0.941 
          TLI                                0.922 
 
Loglikelihood 
 
          H0 Value                      -41257.104 
          H1 Value                      -40981.310 
 
Information Criteria 
 
          Number of Free Parameters             58 
          Akaike (AIC)                   82630.208 
          Bayesian (BIC)                 82949.971 
          Sample-Size Adjusted BIC       82765.708 
            (n* = (n + 2) / 24) 
 
RMSEA (Root Mean Square Error Of Approximation) 
 
          Estimate                           0.046 
          90 Percent C.I.                    0.042  0.050 
          Probability RMSEA <= .05           0.954 
 
SRMR (Standardized Root Mean Square Residual) 
 
          Value                              0.034 
 
 
 
MODEL RESULTS 
 
                   Estimates     S.E.  Est./S.E.    Std     StdYX 
 
 CESD1SOM BY 
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    B1PC04A            1.000    0.000      0.000    0.522    0.614 
    B1PC04B            0.827    0.049     16.997    0.432    0.477 
    B1PC04E            1.069    0.054     19.733    0.558    0.573 
    B1PC04G            0.743    0.059     12.633    0.388    0.340 
    B1PC04K            1.088    0.057     19.151    0.568    0.552 
    B1PC04M            0.765    0.047     16.177    0.399    0.450 
    B1PC04T            1.086    0.052     20.937    0.567    0.620 
 
 CESD1NEG BY 
    B1PC04C            1.000    0.000      0.000    0.588    0.700 
    B1PC04F            1.247    0.041     30.457    0.733    0.801 
    B1PC04J            0.702    0.033     21.370    0.413    0.545 
    B1PC04N            1.070    0.040     26.511    0.629    0.684 
    B1PC04R            1.143    0.038     29.936    0.672    0.784 
 
 B1V3PDET ON 
    CESD1SOM           0.077    0.156      0.494    0.040    0.040 
    CESD1NEG           0.002    0.131      0.015    0.001    0.001 
 
 B1V3PINT ON 
    CESD1SOM           0.141    0.189      0.747    0.074    0.060 
    CESD1NEG           0.031    0.159      0.196    0.018    0.015 
 
 B1V3PNEG ON 
    CESD1SOM           0.083    0.122      0.676    0.043    0.054 
    CESD1NEG           0.008    0.103      0.075    0.005    0.006 
 
 B1V3PDET ON 
    MAGE              -0.014    0.004     -3.514   -0.014   -0.083 
    BLACK              0.359    0.056      6.361    0.359    0.170 
    HISP               0.147    0.070      2.084    0.147    0.062 
 
 B1V3PINT ON 
    MAGE              -0.014    0.005     -2.875   -0.014   -0.066 
    BLACK              0.728    0.068     10.688    0.728    0.278 
    HISP               0.533    0.085      6.272    0.533    0.181 
 
 B1V3PNEG ON 
    MAGE              -0.010    0.003     -3.017   -0.010   -0.069 
    BLACK              0.474    0.044     10.707    0.474    0.279 
    HISP               0.125    0.055      2.274    0.125    0.066 
 
 CESD1SOM WITH 
    CESD1NEG           0.262    0.015     17.630    0.853    0.853 
    MAGE              -0.193    0.081     -2.367   -0.369   -0.065 
    BLACK             -0.009    0.007     -1.278   -0.016   -0.035 
    HISP              -0.035    0.006     -5.778   -0.067   -0.161 
 
 CESD1NEG WITH 
    MAGE              -0.115    0.085     -1.353   -0.196   -0.034 
    BLACK             -0.002    0.007     -0.351   -0.004   -0.009 
    HISP              -0.001    0.006     -0.184   -0.002   -0.005 
 
 MAGE     WITH 
    BLACK             -0.482    0.064     -7.538   -0.482   -0.179 
    HISP               0.214    0.056      3.810    0.214    0.089 
 
 BLACK    WITH 
    HISP              -0.076    0.005    -15.356   -0.076   -0.384 
 
 B1V3PDET WITH 
    B1V3PINT           0.140    0.027      5.111    0.140    0.113 
    B1V3PNEG           0.193    0.018     10.629    0.193    0.242 
 
 B1V3PINT WITH 
    B1V3PNEG           0.365    0.023     15.916    0.365    0.369 
 
 Variances 
    MAGE              32.592    1.077     30.265   32.592    1.000 
    BLACK              0.223    0.007     30.265    0.223    1.000 
    HISP               0.176    0.006     30.265    0.176    1.000 
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    CESD1SOM           0.273    0.021     13.282    1.000    1.000 
    CESD1NEG           0.346    0.021     16.245    1.000    1.000 
 
 Residual Variances 
    B1PC04A            0.449    0.017     26.251    0.449    0.622 
    B1PC04B            0.635    0.022     28.355    0.635    0.773 
    B1PC04C            0.360    0.014     25.954    0.360    0.510 
    B1PC04E            0.636    0.024     27.047    0.636    0.671 
    B1PC04F            0.300    0.014     22.156    0.300    0.358 
    B1PC04G            1.152    0.039     29.423    1.152    0.884 
    B1PC04J            0.404    0.014     28.392    0.404    0.703 
    B1PC04K            0.737    0.027     27.397    0.737    0.696 
    B1PC04M            0.630    0.022     28.623    0.630    0.798 
    B1PC04N            0.449    0.017     26.317    0.449    0.531 
    B1PC04R            0.283    0.012     23.022    0.283    0.385 
    B1PC04T            0.515    0.020     26.127    0.515    0.616 
    B1V3PDET           0.961    0.032     30.247    0.961    0.964 
    B1V3PINT           1.400    0.046     30.223    1.400    0.919 
    B1V3PNEG           0.590    0.019     30.232    0.590    0.919 
 
 
R-SQUARE 
 
    Observed 
    Variable  R-Square 
 
    B1PC04A      0.378 
    B1PC04B      0.227 
    B1PC04C      0.490 
    B1PC04E      0.329 
    B1PC04F      0.642 
    B1PC04G      0.116 
    B1PC04J      0.297 
    B1PC04K      0.304 
    B1PC04M      0.202 
    B1PC04N      0.469 
    B1PC04R      0.615 
    B1PC04T      0.384 
    B1V3PDET     0.036 
    B1V3PINT     0.081 
    B1V3PNEG     0.081 
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Some Practical Considerations 
 
Here, I would like to cover several miscellaneous topics that arise when using SEM 
analyses in practice. 
 

• There is no minimum sample size for SEM, but models based on an N less than 
100 may have convergence problems (i.e., a ML solution is not found).  Bentler 
and Chou (1988) suggest a convention of having at least 10 cases for every 
parameter.  Tanaka (1987) suggests only a 5:1 ratio is needed.   

 
• Nonconvergence occurs when a ML solution is not reached.  Iterations continue 

until the maximum allowable is reached.  Causes can include identification 
problems (i.e., the model is underidentified), specification errors, complex 
models, or latent variables with items that correlate poorly with one another. 

 
• A warning message may indicate a “nonpositive definite sigma matrix.”  This 

means that the program was not able to take the inverse of the implied 
covariance matrix, because the model and data imply negative variances.  The 
most common causes are model specification errors or identification problems.  
The error “the PSI matrix is nonpositive definite” is also a common error message 
and this results from a residual variance that is estimated to be negative. 

 
• Heywood cases are nonsensical results that occur in the output.  Usually they 

involve negative variances (usually measurement error variances) or 
standardized coefficients over 1.0.  Often the computer packages do not print a 
warning, so always examine your output carefully!!   

 
• Underidentified models are a common problem.  Latent variables require at least 

three indicators (i.e., measured variables).  Models with negative degrees of 
freedom are theoretically underidentified, but even some models that are 
theoretically identified, are empirically underidentified.  Empirically underidentified 
models usually result from a model that, overall has sufficient df, but insufficient 
information is available for a portion of the model (e.g., two-indicator latent 
variables, bi-directional paths). 

 
• A good practice is to test portions of your model first, then build up to a more 

complex model.  Starting out with a model that is too complex can result in errors 
in syntax or specifications that cause estimation or fit problems that are difficult to 
locate. 
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Nonnormality and Alternative Estimators
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Multivariate Normality Assumption  
 
Most of the statistical assumptions for SEM are the same assumptions for regression 
analysis (e.g., independent observations, normally distributed errors, identically 
distributed errors or homoscedasticity)  However, SEM with ML also assumes that the 
variables are multivariate normal in the population.  Multivariate normality assumes 
univariate normality—that each variable is normally distributed.  However, univariate 
normality is not sufficient for multivariate normality.  It is possible to have univariate 
normality and multivariate nonnormality.   
 
When the multivariate normality assumption is violated, chi-square values will tend to be 
overestimated (indicating poorer fit), and (in general) standard errors used in 
significance tests for parameters are underestimated.  In other words, fit will tend to be 
poorer and significance of paths will be overestimated (Type I errors). Nonnormality 
does not affect the parameter estimates themselves—only the standard errors are 
biased.  
 
An article by West, Finch, and Curran (1995)presents a nice introduction to problems, 
their detection, and solutions for multivariate nonnormality, but I will make a few brief 
points here. 
 
Detection 
 
The first step is to carefully examine univariate distributions and skew and kurtosis.  
West, Finch, & Curran (1995) recommend concern if skewness > 2 and kurtosis > 7.  
Kurtosis is usually a greater concern than skewness.  If the univariate distributions are 
nonnormal, then the multivariate distribution will be nonnormal.  Keep in mind that one 
can have multivariate nonnormality (i.e., the joint distributions of all the variables is a 
nonnormal joint distribution) even when all the individual variables are normally 
distributed (although this is relatively infrequent in practice).  Therefore, one should also 
examine multivariate kurtosis and skewness.   
 
Tests of multivariate normality are only available in EQS and Lisrel, but it is difficult to 
interpret them.   No one has really provided good cutoff recommendations.  Mardia’s 
multivariate skewness and kurtosis tests are distributed normally (z-test) in very large 
samples, so can be evaluated against a t or z-distribution, but they tend to be sensitive 
to sample size.  Other than a significance tests, there are no suggested cutoffs to 
identify when substantial problems exist.  Lawrence DeCarlo (1997) has developed 
macros for SPSS and SAS to calculate a variety of multivariate nonnormality indices 
(available at http://www.columbia.edu/~ld208/). 
 
In Mplus, when the Satorra-Bentler robust statistics (ESTIMATOR= MLM statement) are 
requested, a “scaling correction factor” is printed in the output.  This correction factor 
can be taken as an index of the degree to which the chi-square value is inflated by 
multivariate kurtosis.  A value of 1.10 represents 10% inflation and a value of 2.0 

http://www.columbia.edu/~ld208/
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represents 100% inflation.  There is no accepted cutoff on what value of the scaling 
correction factor is problematic, but I tend to have minimal concern if it is 1.05 or less.  
 
Remedies 
 
If there are non-normality concerns, one can use a correction to provide better 
estimates of the chi-square value and the standard errors.  Satorra and Bentler (1994) 
developed a “rescaled” chi-square and robust standard error estimates that are 
corrected by a multivariate kurtosis weight matrix.  This method seems to perform well 
in simulation studies (e.g., Hu, Bentler, & Kano, 1992; Curran, West, & Finch, 1996).  
Sample sizes of 250 or greater may be needed to avoid over correction of chi-square 
and standard errors.  
 
Bootstrapping is an increasingly popular approach to correcting standard errors, but it 
seems that more work is needed to understand how well it performs under various 
conditions (e.g., specific bootstrap approach, sample sizes needed).  Simulation work 
(e.g., Hancock and Nevitt, 1999). 
 
I will only illustrate the Satorra-Bentler correction method here.  Implementation is 
simple—one just needs to specify ESTIMATOR=MLM under the ANALYSIS section.   
As an example, I analyze the two-factor CFA from Example 5. 
 

TITLE:  Example 8, 2-factor CFA with Satorra-Bentler corrections; 
 
DATA:  FILE=c:\jason\mplus\ehs\ex2.dat; 
               FORMAT=FREE; 
 
VARIABLE:  NAMES = program mrisk3 site c_maler mage race b3p35a    
    b3p35b b3p35c b3p35d b3p35e b2p35a b2p35b b2p35c    
 b2p35d b2p35e b1pc04a b1pc04b b1pc04c b1pc04e b1pc04f    
 b1pc04g b1pc04j b1pc04k b1pc04m b1pc04n b1pc04r b1pc04t    
 b1p69a b1p69b b1p69c b1p69d b1p69e b1p_cesd b1v3pdet  
b1v3pint b1v3pneg b2v3pdet b2v3pint b2v3pneg b3v3pdet b3v3pint  
 b3v3pneg b1p_conf b2p_conf b3p_conf; 
 
    MISSING = program-b3p_conf(-99,-6--1); 
 
    USEVARIABLES=b1pc04a-b1pc04t; 
 
 
ANALYSIS:   
   TYPE = GENERAL; ESTIMATOR = MLM; MATRIX = COVARIANCE;  
 
 
MODEL:   cesd1som BY b1pc04a b1pc04b b1pc04e b1pc04g b1pc04k  
                   b1pc04m b1pc04t; 
         cesd1neg BY b1pc04c b1pc04f b1pc04j b1pc04n b1pc04r; 
         cesd1som WITH cesd1neg; 
 
OUTPUT:  STANDARDIZED; 
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Example 8:  Two-factor CFA with Rescaled Chi-square  
and Robust Standard Errors 

 
 
THE MODEL ESTIMATION TERMINATED NORMALLY 

 
TESTS OF MODEL FIT 
 
Chi-Square Test of Model Fit 
 
          Value                            241.193* 
          Degrees of Freedom                    53 
          P-Value                           0.0000 
          Scaling Correction Factor          1.307 
            for MLM 
 
*   The chi-square value for MLM, MLMV, MLR, WLSM and WLSMV cannot be used for 
    chi-square difference tests.  MLM, MLR and WLSM chi-square difference 
    testing is described in the Mplus Technical Appendices at www.statmodel.com. 
    See chi-square difference testing in the index of the Mplus User's Guide. 
 
Chi-Square Test of Model Fit for the Baseline Model 
 
          Value                           5998.889 
          Degrees of Freedom                    66 
          P-Value                           0.0000 
 
CFI/TLI 
 
          CFI                                0.968 
          TLI                                0.960 
 
Number of Free Parameters                       37 
 
RMSEA (Root Mean Square Error Of Approximation) 
 
          Estimate                           0.040 
 
SRMR (Standardized Root Mean Square Residual) 
 
          Value                              0.027 
 
WRMR (Weighted Root Mean Square Residual) 
 
          Value                              1.425 

 
 
MODEL RESULTS 
                   Estimates     S.E.  Est./S.E.    Std     StdYX 
 
 CESD1SOM BY 
    B1PC04A            1.000    0.000      0.000    0.528    0.621 
    B1PC04B            0.828    0.047     17.498    0.437    0.480 
    B1PC04E            1.048    0.051     20.627    0.553    0.565 
    B1PC04G            0.759    0.050     15.124    0.401    0.348 
    B1PC04K            1.100    0.055     19.997    0.581    0.557 
    B1PC04M            0.793    0.048     16.573    0.419    0.469 
    B1PC04T            1.068    0.050     21.191    0.564    0.608 
 
 CESD1NEG BY 
    B1PC04C            1.000    0.000      0.000    0.589    0.699 
    B1PC04F            1.247    0.043     29.293    0.734    0.799 
    B1PC04J            0.720    0.043     16.743    0.424    0.557 
    B1PC04N            1.073    0.045     23.873    0.632    0.678 
    B1PC04R            1.146    0.042     27.316    0.675    0.779 
 
 CESD1SOM WITH 
    CESD1NEG           0.265    0.019     14.092    0.852    0.852 
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 Intercepts 
    B1PC04A            1.658    0.018     92.544    1.658    1.951 
    B1PC04B            1.683    0.019     87.596    1.683    1.847 
    B1PC04C            1.532    0.018     86.250    1.532    1.818 
    B1PC04E            1.907    0.021     92.294    1.907    1.946 
    B1PC04F            1.652    0.019     85.337    1.652    1.799 
    B1PC04G            2.280    0.024     94.044    2.280    1.983 
    B1PC04J            1.417    0.016     88.387    1.417    1.863 
    B1PC04K            1.963    0.022     89.311    1.963    1.883 
    B1PC04M            1.609    0.019     85.423    1.609    1.801 
    B1PC04N            1.653    0.020     84.121    1.653    1.773 
    B1PC04R            1.671    0.018     91.500    1.671    1.929 
    B1PC04T            1.744    0.020     89.181    1.744    1.880 
 
 Variances 
    CESD1SOM           0.279    0.022     12.495    1.000    1.000 
    CESD1NEG           0.347    0.026     13.572    1.000    1.000 
 
 Residual Variances 
    B1PC04A            0.443    0.019     23.139    0.443    0.614 
    B1PC04B            0.639    0.024     27.011    0.639    0.770 
    B1PC04C            0.364    0.017     20.947    0.364    0.512 
    B1PC04E            0.654    0.023     27.905    0.654    0.681 
    B1PC04F            0.305    0.017     17.826    0.305    0.361 
    B1PC04G            1.162    0.028     41.685    1.162    0.879 
    B1PC04J            0.399    0.019     21.364    0.399    0.689 
    B1PC04K            0.750    0.027     28.055    0.750    0.690 
    B1PC04M            0.623    0.024     25.702    0.623    0.780 
    B1PC04N            0.470    0.022     21.554    0.470    0.541 
    B1PC04R            0.295    0.017     17.870    0.295    0.394 
    B1PC04T            0.542    0.022     24.962    0.542    0.630 
 
 
R-SQUARE 
 
    Observed 
    Variable  R-Square 
 
    B1PC04A      0.386 
    B1PC04B      0.230 
    B1PC04C      0.488 
    B1PC04E      0.319 
    B1PC04F      0.639 
    B1PC04G      0.121 
    B1PC04J      0.311 
    B1PC04K      0.310 
    B1PC04M      0.220 
    B1PC04N      0.459 
    B1PC04R      0.606 
    B1PC04T      0.370 
 

Note that you cannot conduct chi-square difference tests with the rescaled chi-square in 
the usual way.  The difference test needs to be weighted by the rescaling factor.  With 
your example files, I have included an Excel spreadsheet that does this calculation.  
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Categorical Measured Variables 
 

It is important to distinguish between categorical variables and continuous variables.  
Categorical variables are those with two values (i.e., binary, dichotomous) or those with 
a few ordered categories (say 3 to 5).  Examples might include gender, dead vs. alive, 
audited vs. not audited, or variables with few response options like “never,” 
“sometimes,” or “always.”  Continuous variables are variables measured on a ratio or 
interval scale, such as temperature, height, or income in dollars.  Ordinal variables with 
many categories, such as 7-point Likert-type scales of agreement, are usually treated 
as “continuous.”   
 
ML estimation is generally not appropriate for binary dependent variables or dependent 
variables with few ordered categories, and special estimation techniques are needed. A 
dependent variable in this context is any variable by predicted other variables in the 
model and includes any indicator for a latent variable. A categorical independent 
variable not predicted by any variable in the data set (i.e., an exogenous variable) does 
not require any special treatment and can be modeled using traditional ML estimation. 
 
There are two common ways of estimating models when one or more dependent 
variables are binary or ordinal.   The first method, which is available in some other 
statistical packages, such as Lisrel, is an analysis of polychoric correlation matrices 
(see Technical Note # 3) using a weighted least squares (WLS) estimator.  This method 
has computational limitations when there are many variables in the model. The second 
method, an analysis only available in Mplus, is Muthen’s categorical variable model 
(CVM) estimation. CVM estimation uses a process similar to the polychoric correlation 
matrix approach but has computational and statistical advantages (it performs well with  
small sample sizes and larger models).  In Mplus, the CVM approach is invoked by 
using the CATEGORICAL option on the VARIABLE command (make sure you use the 
default estimation method of WLSMV by omitting the TYPE statement under the 
ANALYSIS paragraph).    
 
When the binary variables are not latent variable indicators, one can obtain logistic 
regression estimates by using the CATEGORICAL statement together with 
TYPE=LOGISTIC, ESTIMATOR=ML, or ESTIMATOR=MLR on the ANALYSIS 
command.  If the variable listed on the CATEGORICAL statement has more than two 
categories, Mplus assumes it is an ordinal variable and generates an ordinal logistic 
regression.  Probit regression estimates for binary outcomes are obtained when the 
CATEGORICAL statement is used and neither TYPE=LOGISTIC nor ESTIMATOR=ML 
or MLR are specified. 
 
When binary variables are used as latent variable indicators, the CVM approach should 
be used by specifying those variables on the CATEGORICAL statement and using the 
default estimation procedure (i.e., omit the TYPE statement).  
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Alternative Estimation Approaches 
 

Maximum likelihood (ML) is by far the most common estimation used for structural 
equation modeling (and, indeed, is the default in all packages), but there are a number 
of alternatives to ML available in Mplus.  

 
I will not review all the estimation procedures here or discuss their details (see 
Technical Note # 3), but here is a guide that I think will be helpful when fitting Mplus 
options in with the literature.   This is a simplification and embellishment of information 
on p. 366 of the Mplus users guide (Chapter 15). 

 
Estimator Purpose Comment Mplus Specification 
ML Continuous normal variables Most widely used estimator in SEM.  ESTIMATOR=ML; 

(default for GENERAL models 
without any categorical variables) 

MLM Non-normal continuous variables Mean-adjusted maximum likelihood.  
Produces Satorra-Bentler scaled chi-
square and robust standard errors 
(Satorra & Bentler, 1988; 1994) 

ESTIMATOR=MLM; 

MLMV Non-normal continuous variables, 
but less commonly used 

Maximum likelihood with mean and 
variance-adjusted chi-square and robust 
standard errors.  A (less preferable) 
alternative to MLM. 

ESTIMATOR=MLMV; 
 

MLR Non-normal continuous variables 
with missing data 

Maximum likelihood robust. Yuan-Bentler 
(2000) robust estimator for missing data 
(sometimes referred to the sandwich 
estimator) 

ESTIMATOR=MLR; 
(default if TYPE=MISSING or if 
TYPE=LOGISTIC) 

MLF Not commonly used Generates approximate standard errors 
(using first order derivatives) and 
traditional chi-square 

ESTIMATOR=MLF; 

MUML Possible estimator for multilevel 
models 

Muthen’s limited information estimator ESTIMATOR=MUML; 

WLS Not commonly used Also known as ADF or AGLS elsewhere.  
Can be used for categorical data, but 
requires many cases (e.g., approx 5,000) 
and simple models 

ESTIMATOR=WLS; 

WLSM Not commonly used Weighted least squares with mean-
adjusted chi-square and robust standard 
errors. Diagonal weight matrix is used for 
parameter estimation. Sometimes 
referred to as a “diagonally weighted least 
squares” estimator. 

ESTIMATOR=WLSM; 

WLSMV One or more categorical dependent 
variables (binary or ordinal). 

Weighted least squares with mean and 
variance-adjusted chi-square and robust 
standard errors. Provides Muthen’s CVM 
estimation.  Sometimes referred to as a 
“diagonally weighted least squares” 
estimator.5 

ESTIMATOR=WLSMV; 
(default if CATEGORICAL option 
used on the VARIABLE command) 

GLS Rarely used in practice  General estimator, of which ML is a 
special case 

ESTIMATOR=GLS; 

ULS Rarely used in SEM models Unweighted least squares.  Simple least 
squares estimator. Could be used to 
generate starting values if a model does 
not converge or has other estimation 
difficulties.  Used in Mplus’ EFA. 

ESTIMATOR=ULS; 
(default for TYPE=EFA) 

 
 

                                                 
5 Note that models that use categorical outcomes estimated by MLSMV require that data are MCAR, not 
just MAR. 
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Technical Note #3 : Alternative Estimation Methods 
ML 
 
Remember that the usual approach to estimating fit and coefficients in SEM is the maximum 
likelihood (ML) approach.  ML uses derivatives to minimize the following fit function: 

( ) ( )( ) ( )1log logMLF tr S Sθ θ−= Σ + Σ − − +p q  
The ML estimator assumes that the variables in the model are multivariate normal (i.e., the joint 
distribution of the variables is distributed normally). 
 
GLS 
Generalized least squares is an alternative fitting function. The GLS fit function also minimizes 
the discrepancy between S and Σ, but uses a weight matrix for the residuals, designated W. 

( ){ }( )211
2GLSF tr S Wθ −⎛ ⎞ ⎡ ⎤= − Σ⎜ ⎟ ⎣ ⎦⎝ ⎠

 

Notice that this is a much simpler function (e.g., no logs), and it is clear that the discrepancy 
between the obtained covariance matrix and the covariance matrix implied by the model (S-Σ) is 
minimized after weighting it by W.  Although any W can be chosen for the weight matrix, most 
commonly, the inverse of the covariance matrix, S, is used in SEM packages.  FGLS is 
asymptotically equivalent to FML, meaning that as sample sizes increase, they are approximately 
equal.  FGLS is based on the same assumptions as FML and would be used under the same 
conditions.  It is thought to perform less well, however, in small samples, so FML is usually 
chosen instead of FGLS.  The simplicity of the function, however, means that other weight 
matrices could be used in an attempt to correct for violations of distributional assumptions. 
 
ADF 
The asymptotic distribution free function was developed by Browne (1984).  It is described as 
arbitrary generalized least squares (AGLS) by Bentler in the EQS package and weighted least 
squares (WLS) by Joreskog and Sorbom in Lisrel. The main advantage of the ADF estimator is 
that it does not require multivariate normality.  The ADF estimator is based on the FGLS, except a 
different W is chosen. It can be written in a general form that encompasses GLS, ML, and ULS 
(not discussed here) where the difference depends on the choice of W: 

( ) ( )1
ADF AGLS WLSF F F s W sσ σ−′= = = − −  

W used in FADF is based on a covariance of all of the elements of the covariance matrix, S.  That 
is, a covariance matrix is constructed that estimates the covariances between each sij element 
of S, and is therefore a ½[v(v+1)] by ½[v(v+1)] matrix.   The reason for this is that these 
“covariances of covariances” are the related to kurtosis estimates (so called “fourth-order 
moments”).  So, the GLS fit function is weighted by variances and kurtosis in attempt to correct 
for violations of the normality assumption.  Another way of saying this is that when the data are 
normal, the ADF estimator reduces to GLS because there is no kurtosis.  The large weight 
matrix causes serious practical difficulties when there is a large number of variables in the 
model (e.g., more that 20 or so), and computer packages (e.g., EQS) do not allow estimation 
unless the number of cases is equal or greater than number of elements in the weight matrix 
(i.e.,  ½[v(v+1)] times ½[v(v+1)] divided by 2).  Simulations studies suggest that chi-square 
values are severely overestimated with small samples and that sample sizes of about 5000 are 
necessary for good estimates.  A recent study by Olsson, Foss, Troye, and Howell (2000) 
suggests that ADF estimation performs poorly when the model is misspecified.  Combined with 
the limitation of variables, this is usually seen as an unattractive approach when nonnormality 
exists. 
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Muthen’s CVM 
Muthen (1993) suggested a categorical variable model (CVM) for use when models measured 
variables are categorical (either dichotomous or ordered categorical).  Models with categorical 
variables are always considered to be in violation of the normality assumption and, thus, the 
usual FML estimator is not recommended.  The CVM approach uses the general ADF function 
(which Muthen and Lisrel call WLS), but does not have a practical limit on the number of 
variables nor require such large samples, because it avoids inversion of the large weight matrix 
(using something called “Taylor expansion”).  The idea behind the method is that categorical 
variables have an underlying continuous latent variable, called y*.  y* is estimated by polychoric 
correlations which correct for loss of information in Pearson correlations due to categorization of 
a continuous variable (See MacCallum, Zhang, Preacher, & Rucker, 2002). Tetrachoric 
correlations are a special case of polychoric correlations involving only binary variables, and 
polyserial correlations are those involving the correlation between a binary and a continuous 
variable.  The polychoric correlations are then used to estimate the model using the FWLS 
estimator.  Mplus has special features that implement the CVM approach.  A similar approach is 
available in Lisrel by creating a polychoric correlation matrix in Prelis (the Lisrel preprocessor) 
and then analyzing the new matrix in Lisrel with WLS (not ML).  The CVM approach with Mplus 
is a simpler process and is able to avoid inversion of the large W matrix. 
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Missing Data 
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 Missing Data and Missing Data Estimation 
 

Listwise Deletion 
Until recently, listwise deletion has been the most common way of dealing with missing 
data in SEM.  That is, complete data was required on all variables in the analysis—any 
cases with missing data on one or more of the variables was eliminated from the 
analysis.   In the last few years, however, researchers have begun to use data 
estimation techniques when there are missing data among the variables in a structural 
model.  And simulation data convincingly shows that when there are a lot of missing 
data, listwise deletion will have biased parameters and standard errors. 
 
MAR and MCAR 
A distinction of the type of missing data was made by Rubin (1976), who classified 
missing data as missing at random (MAR), missing completely at random (MCAR), or 
neither.6  Both MAR and MCAR require that the variable with missing data be unrelated 
to whether or not a person has missing data on that variable.  For example, if those with 
lower incomes are more likely to have missing data on the income variable, the data 
cannot be MAR or MCAR.  The difference between MAR and MCAR is whether or not 
other variables in the data set are associated with whether or not someone has missing 
data on a particular variable.  For example, are older people more likely to refuse to 
respond to the income variable?  The term MAR is confusing because data are not 
really missing at random, because missingness does depend on some of the variables 
in the data set. 
 

 
From Schafer, J. L. & Graham, J. W. (2002). Missing data: our view of the state of the art. Psychological Methods, 7(2), 147-177. 
 
FIML 
Probably the best missing data estimation approach is full information maximum 
likelihood (FIML), which has been shown to  produce unbiased parameter estimates 
and standard errors under MAR and MCAR.  FIML, sometimes called "raw maximum 
likelihood" or just "ML," is currently available in Amos, Mplus, and Mx.   It requires that 
data be at least MAR (i.e., either MAR or MCAR are ok). FIML works by estimating a 
                                                 
6 Muthen uses the term “non-ignorable missing data” to describe anything not MCAR or MAR. 
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likelihood function for each individual based on the variables that are present so that all 
the available data are used.  For example, there may be some variables with data for all 
389 cases but some variables may have data for only 320 of the cases.  The fitting 
function for FIML is computed by summing all the individual fit functions, and, thus, it is 
able to use all 389 cases. Rather than the traditional approach to calculating chi-square, 
FIML estimates two models, the H0 model and the H1 model.  The H0 model is the 
"unrestricted” model, meaning that all variables are correlated.  The H1 model is the 
specified model.  The difference between the two log-likelihoods is used to derive the 
chi-square.  This approach allows one to use all the available information in the 
variables. 
 
Determining If Missing Data are at Least MAR 
Practically speaking, it is quite difficult to determine if your data are at least MAR.  With 
a single variable that has missing data, it is not too difficult to determine if any of the 
other variables in the data set predict whether there are missing data on a particular 
variable.  In practice, however, data will be missing on a number of variables, and so 
determining if other variables are related may be considerably complex.  But the real 
importance is determining if missingness is associated with values of the variables that 
are missing data.  Determining whether data are at least MAR may be quite difficult to 
do. In a recent discussion of missing data estimation, Schafer and Graham (2002) state: 
"When missingness is beyond the researcher's control, its distribution is unknown and 
MAR is only an assumption.  In general, there is no way to test whether MAR holds in a 
data set, except by obtaining follow-up data from nonrespondents or by imposing an 
unverifiable model."  (p. 152).  There may be some ways to try to explore the issue, 
however.  With attrition over time, it may be possible to test whether missingness is 
associated with the value of the variable by examining whether the variable at Time 1 
(i.e., with complete data) is associated with the missingness for that variable at Time 2.  
If data are missing on individual items from a scale, an approximate approach might be 
to attempt to show that missingness on particular items is unrelated to scale scores for 
that measure.  In other circumstances, one may have to provide a theoretical argument 
that missingness is not associated with the variable or rely on information in the 
literature.  There are many writings on missing data estimation, but few on how to go 
about determining if data are at least MAR.  
 
Multigroup SEM Approach 
Another approach to missing data analysis uses a multigroup structural model 
approach, suggested by Muthen, Kaplan, and Hollis (1987).  The same model is 
estimated in different groups. The groups are based on different patterns of missing 
data—one group for each pattern.  A few hand calculations must be done.  This is a 
fairly impractical approach if there are many patterns of missing data, but might be 
especially useful if data are missing by design.   
 
Pairwise Deletion 
Pairwise deletion is sometimes used to estimate models when there are missing data. 
With pairwise deletion, a covariance (or correlation) matrix is computed where each 
element is based on the full number of cases with complete data for each pair of 
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variables. This approach may lead to nonpositive definite matrices and to standardized 
values over 1.  There are other potential problems with the approach and I do not 
recommend it.  
 
Other Imputation Methods 
There are several other estimation approaches in which the data are imputed.  That is, 
a full data set is created based on the imputation method that fills in data based on 
information from existing data.  Some examples are: mean imputation (the average 
scores is filled in), regression-based methods (a regression is used to predict a score), 
resemblance-based “hot-deck imputation” (which imputes new values from similar 
cases), and Expectation Maximization (EM; which is a maximum likelihood-based 
approach).  The regression method and the EM approach build in some error (so that 
the imputed values are not perfectly correlated with the existing data).  Of the two, the 
EM approach seems to perform the best.  The EM approach requires that data are at 
least MAR.   
 
Comments 
Particularly when there is a large amount of missing data, researchers are better off 
using a FIML approach to estimation. Given that it is fairly easy to implement in the 
packages where it is available, there is no reason not to do it.  In the conclusions of their 
paper, Schafer and Graham suggest that under many circumstances there may be 
advantages to missing data estimation relative to listwise deletion even when data are 
not MAR.  What is a large amount of missing data?  The percentage of missing data is 
sometimes discussed based on the percentage missing for a certain variable.  It makes 
more sense to me to examine the percentage of cases missing if listwise deletion were 
to be used.  With this method, data sets (i.e., the set of variables in the model) in which 
more than roughly 20% of the cases are excluded by listwise deletion seem to lead to 
substantial bias in estimates (e.g., Arbuckle, 1996).  With fewer than this much missing 
data, it may not be a major difference whether listwise deletion or FIML is used.  
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Example 9:  Missing Data Estimation  
By default, Mplus uses listwise deletion whenever there are missing data present.  FIML 
estimation can be obtained, however, simply by including a TYPE=MISSING H1 
statement on the analysis command in Mplus.  The H1 statement is needed to obtain an 
overall model chi-square.7  Below is syntax for a re-estimation of the full SEM model 
used in Example 7.  In that example, there were only 1832 cases when listwise deletion 
was used.  The new analysis uses 3001 cases, suggesting about a 40% loss of data 
without the missing data estimation.  
 

TITLE:  Example 9, full SEM with missing data estimation; 
 
DATA:  FILE=c:\jason\mplus\ehs\ex2.dat; 
               FORMAT=FREE; 
 
VARIABLE:  NAMES = program mrisk3 site c_maler mage race b3p35a    
    b3p35b b3p35c b3p35d b3p35e b2p35a b2p35b b2p35c    
 b2p35d b2p35e b1pc04a b1pc04b b1pc04c b1pc04e b1pc04f    
 b1pc04g b1pc04j b1pc04k b1pc04m b1pc04n b1pc04r b1pc04t    
 b1p69a b1p69b b1p69c b1p69d b1p69e b1p_cesd b1v3pdet  
b1v3pint b1v3pneg b2v3pdet b2v3pint b2v3pneg b3v3pdet b3v3pint  
 b3v3pneg b1p_conf b2p_conf b3p_conf; 
 
    MISSING = program-b3p_conf(-99,-6--1); 
 
    USEVARIABLES=b1pc04a-b1pc04t b1v3pdet b1v3pint b1v3pneg  
             mage black hisp; 
 
DEFINE:  IF (race EQ 1 OR race GE 3) THEN black = 0; 
         IF (race EQ 2) THEN black = 1; 
         IF (race EQ 1 OR race EQ 2 OR race EQ 4) THEN hisp = 0; 
         IF (race EQ 3) THEN hisp = 1; 
 
ANALYSIS:   
        TYPE = MISSING H1; ESTIMATOR = ML; MATRIX = COVARIANCE;  
 
MODEL:  cesd1som BY b1pc04a b1pc04b b1pc04e b1pc04g b1pc04k  
                   b1pc04m b1pc04t; 
        cesd1neg BY b1pc04c b1pc04f b1pc04j b1pc04n b1pc04r; 
        b1v3pdet b1v3pint b1v3pneg ON cesd1som cesd1neg  
                  mage black hisp; 
        cesd1som with cesd1neg mage black hisp; 
        cesd1neg with mage black hisp; 
        mage with black hisp; 
        black with hisp; 
        b1v3pdet with b1v3pint b1v3pneg; 
        b1v3pint with b1v3pneg; 
 
OUTPUT:  STANDARDIZED; 

                                                 
7 Without this statement, Mplus only provides a likelihood value, testing what is sometimes referred to as 
the H0 model. The likelihood value from that model can be used for comparisons with other models, but 
does not give an overall chi-square for the model.  With a lot of missing data, computation can be 
intensive and convergence is sometimes not achieved.  In those instances, omitting the H1 statement 
might be useful to get model results (if not only for the purpose of identifying model problems etc.). 
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Example 9 Output:  Missing Data Estimation 
INPUT READING TERMINATED NORMALLY 
 
Example 9, full SEM with missing data estimation; 
 
SUMMARY OF ANALYSIS 
 
Number of groups                                                 1 
Number of observations                                        3001 
 
Number of dependent variables                                   15 
Number of independent variables                                  3 
Number of continuous latent variables                            2 
 
Observed dependent variables 
 
  Continuous 
   B1PC04A     B1PC04B     B1PC04C     B1PC04E     B1PC04F     B1PC04G 
   B1PC04J     B1PC04K     B1PC04M     B1PC04N     B1PC04R     B1PC04T 
   B1V3PDET    B1V3PINT    B1V3PNEG 
 
Observed independent variables 
   MAGE        BLACK       HISP 
 
Continuous latent variables 
   CESD1SOM    CESD1NEG 
 
Estimator                                                       ML 
Information matrix                                        OBSERVED 
Maximum number of iterations                                  1000 
Convergence criterion                                    0.500D-04 
Maximum number of steepest descent iterations                   20 
Maximum number of iterations for H1                           2000 
Convergence criterion for H1                             0.100D-03 
 
Input data file(s) 
  c:\jason\mplus\ehs\ex2.dat 
 
Input data format  FREE 
 
SUMMARY OF DATA 
 
     Number of patterns          37 
 
COVARIANCE COVERAGE OF DATA 
 
Minimum covariance coverage value   0.100 
 
    PROPORTION OF DATA PRESENT 
 
 
           Covariance Coverage 
              B1PC04A       B1PC04B       B1PC04C       B1PC04E       B1PC04F 
              ________      ________      ________      ________      ________ 
 B1PC04A        0.767 
 B1PC04B        0.766         0.767 
 B1PC04C        0.766         0.765         0.766 
 B1PC04E        0.766         0.766         0.765         0.766 
 B1PC04F        0.766         0.766         0.765         0.766         0.766 
 B1PC04G        0.765         0.764         0.764         0.764         0.764 
 B1PC04J        0.764         0.764         0.764         0.764         0.764 
 B1PC04K        0.765         0.765         0.764         0.765         0.765 
 B1PC04M        0.760         0.760         0.759         0.760         0.760 
 B1PC04N        0.765         0.765         0.764         0.765         0.765 
 B1PC04R        0.764         0.764         0.763         0.764         0.764 
 B1PC04T        0.765         0.765         0.764         0.765         0.765 
 B1V3PDET       0.635         0.634         0.634         0.634         0.634 
 B1V3PINT       0.635         0.634         0.634         0.634         0.634 
 B1V3PNEG       0.635         0.634         0.634         0.634         0.634 
 MAGE           0.765         0.765         0.765         0.765         0.765 
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 BLACK          0.754         0.754         0.754         0.753         0.753 
 HISP           0.754         0.754         0.754         0.753         0.753 
 
           Covariance Coverage 
              B1PC04G       B1PC04J       B1PC04K       B1PC04M       B1PC04N 
              ________      ________      ________      ________      ________ 
 B1PC04G        0.765 
 B1PC04J        0.763         0.765 
 B1PC04K        0.764         0.764         0.766 
 B1PC04M        0.759         0.759         0.760         0.761 
 B1PC04N        0.764         0.764         0.765         0.760         0.766 
 B1PC04R        0.762         0.763         0.764         0.758         0.764 
 B1PC04T        0.764         0.764         0.765         0.760         0.765 
 B1V3PDET       0.633         0.634         0.634         0.631         0.634 
 B1V3PINT       0.633         0.634         0.634         0.631         0.634 
 B1V3PNEG       0.633         0.634         0.634         0.631         0.634 
 MAGE           0.764         0.763         0.764         0.759         0.764 
 BLACK          0.752         0.752         0.753         0.748         0.753 
 HISP           0.752         0.752         0.753         0.748         0.753 
 
           Covariance Coverage 
              B1PC04R       B1PC04T       B1V3PDET      B1V3PINT      B1V3PNEG 
              ________      ________      ________      ________      ________ 
 B1PC04R        0.764 
 B1PC04T        0.764         0.766 
 B1V3PDET       0.633         0.634         0.652 
 B1V3PINT       0.633         0.634         0.652         0.652 
 B1V3PNEG       0.633         0.634         0.652         0.652         0.652 
 MAGE           0.763         0.764         0.651         0.651         0.651 
 BLACK          0.751         0.753         0.641         0.641         0.641 
 HISP           0.751         0.753         0.641         0.641         0.641 
 
           Covariance Coverage 
              MAGE          BLACK         HISP 
              ________      ________      ________ 
 MAGE           0.998 
 BLACK          0.978         0.980 
 HISP           0.978         0.980         0.980 
 
THE MODEL ESTIMATION TERMINATED NORMALLY 
 
TESTS OF MODEL FIT 
 
Chi-Square Test of Model Fit 
          Value                            642.380 
          Degrees of Freedom                   113 
          P-Value                           0.0000 
 
Chi-Square Test of Model Fit for the Baseline Model 
          Value                           9296.714 
          Degrees of Freedom                   150 
          P-Value                           0.0000 
 
CFI/TLI 
          CFI                                0.942 
          TLI                                0.923 
 
Loglikelihood 
 
          H0 Value                      -53479.484 
          H1 Value                      -53158.294 
 
Information Criteria 
          Number of Free Parameters             76 
          Akaike (AIC)                  107110.969 
          Bayesian (BIC)                107567.478 
          Sample-Size Adjusted BIC      107325.997 
            (n* = (n + 2) / 24) 
 
RMSEA (Root Mean Square Error Of Approximation) 
          Estimate                           0.040 
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          90 Percent C.I.                    0.037  0.043 
          Probability RMSEA <= .05           1.000 
 
SRMR (Standardized Root Mean Square Residual) 
          Value                              0.032 
 
MODEL RESULTS 
 
                   Estimates     S.E.  Est./S.E.    Std     StdYX 
 CESD1SOM BY 
    B1PC04A            1.000    0.000      0.000    0.522    0.611 
    B1PC04B            0.835    0.044     18.956    0.436    0.479 
    B1PC04E            1.067    0.049     21.850    0.557    0.568 
    B1PC04G            0.774    0.053     14.488    0.404    0.353 
    B1PC04K            1.117    0.053     21.182    0.583    0.560 
    B1PC04M            0.775    0.043     18.151    0.405    0.452 
    B1PC04T            1.104    0.048     22.837    0.576    0.623 
 
 CESD1NEG BY 
    B1PC04C            1.000    0.000      0.000    0.593    0.701 
    B1PC04F            1.244    0.036     34.389    0.737    0.802 
    B1PC04J            0.716    0.029     24.296    0.424    0.559 
    B1PC04N            1.057    0.036     28.976    0.627    0.675 
    B1PC04R            1.141    0.035     33.059    0.676    0.780 
 
 B1V3PDET ON 
    CESD1SOM           0.117    0.151      0.778    0.061    0.061 
    CESD1NEG          -0.032    0.126     -0.251   -0.019   -0.019 
 
 B1V3PINT ON 
    CESD1SOM           0.115    0.183      0.631    0.060    0.049 
    CESD1NEG           0.063    0.152      0.414    0.037    0.030 
 
 B1V3PNEG ON 
    CESD1SOM           0.095    0.116      0.820    0.050    0.063 
    CESD1NEG           0.000    0.097     -0.004    0.000    0.000 
 
 B1V3PDET ON 
    MAGE              -0.016    0.004     -3.907   -0.016   -0.088 
    BLACK              0.369    0.056      6.622    0.369    0.175 
    HISP               0.155    0.069      2.239    0.155    0.066 
 
 B1V3PINT ON 
    MAGE              -0.015    0.005     -3.108   -0.015   -0.069 
    BLACK              0.714    0.066     10.762    0.714    0.275 
    HISP               0.505    0.083      6.119    0.505    0.174 
 
 B1V3PNEG ON 
    MAGE              -0.010    0.003     -3.256   -0.010   -0.072 
    BLACK              0.466    0.042     11.020    0.466    0.280 
    HISP               0.124    0.053      2.364    0.124    0.067 
 
 CESD1SOM WITH 
    CESD1NEG           0.262    0.014     19.188    0.847    0.847 
    MAGE              -0.235    0.071     -3.299   -0.450   -0.080 
    BLACK             -0.004    0.006     -0.740   -0.009   -0.018 
    HISP              -0.039    0.006     -6.946   -0.074   -0.175 
 
 CESD1NEG WITH 
    MAGE              -0.078    0.075     -1.038   -0.132   -0.023 
    BLACK             -0.001    0.006     -0.207   -0.002   -0.005 
    HISP              -0.003    0.006     -0.436   -0.004   -0.010 
 
 MAGE     WITH 
    BLACK             -0.496    0.051     -9.808   -0.496   -0.185 
    HISP               0.302    0.045      6.741    0.302    0.126 
 
 BLACK    WITH 
    HISP              -0.082    0.004    -20.349   -0.082   -0.405 
 
 B1V3PDET WITH 
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    B1V3PINT           0.129    0.027      4.854    0.129    0.104 
    B1V3PNEG           0.191    0.017     10.952    0.191    0.241 
 
 B1V3PINT WITH 
    B1V3PNEG           0.358    0.022     16.361    0.358    0.367 
 
 Means 
    MAGE              22.657    0.103    219.704   22.657    4.014 
    BLACK              0.347    0.009     39.559    0.347    0.729 
    HISP               0.236    0.008     30.162    0.236    0.556 
 
 Intercepts 
    B1PC04A            1.660    0.018     93.358    1.660    1.942 
    B1PC04B            1.683    0.019     88.761    1.683    1.848 
    B1PC04C            1.537    0.018     87.239    1.537    1.819 
    B1PC04E            1.907    0.020     93.464    1.907    1.945 
    B1PC04F            1.657    0.019     86.489    1.657    1.803 
    B1PC04G            2.278    0.024     95.261    2.278    1.986 
    B1PC04J            1.417    0.016     89.414    1.417    1.865 
    B1PC04K            1.961    0.022     90.449    1.961    1.883 
    B1PC04M            1.611    0.019     86.024    1.611    1.797 
    B1PC04N            1.651    0.019     85.272    1.651    1.778 
    B1PC04R            1.673    0.018     92.482    1.673    1.929 
    B1PC04T            1.739    0.019     90.327    1.739    1.880 
    B1V3PDET           1.820    0.103     17.671    1.820    1.811 
    B1V3PINT           2.476    0.124     20.029    2.476    2.007 
    B1V3PNEG           1.501    0.079     18.979    1.501    1.898 
 
 Variances 
    MAGE              31.856    0.823     38.698   31.856    1.000 
    BLACK              0.227    0.006     38.347    0.227    1.000 
    HISP               0.180    0.005     38.336    0.180    1.000 
    CESD1SOM           0.273    0.019     14.739    1.000    1.000 
    CESD1NEG           0.352    0.019     18.211    1.000    1.000 
 
 Residual Variances 
    B1PC04A            0.458    0.016     29.416    0.458    0.627 
    B1PC04B            0.639    0.020     31.668    0.639    0.771 
    B1PC04C            0.363    0.013     28.891    0.363    0.508 
    B1PC04E            0.650    0.021     30.333    0.650    0.677 
    B1PC04F            0.301    0.012     24.561    0.301    0.356 
    B1PC04G            1.152    0.035     32.798    1.152    0.876 
    B1PC04J            0.397    0.013     31.584    0.397    0.688 
    B1PC04K            0.744    0.025     30.274    0.744    0.686 
    B1PC04M            0.639    0.020     31.818    0.639    0.796 
    B1PC04N            0.469    0.016     29.611    0.469    0.544 
    B1PC04R            0.294    0.011     25.852    0.294    0.391 
    B1PC04T            0.523    0.018     28.866    0.523    0.612 
    B1V3PDET           0.971    0.031     31.204    0.971    0.961 
    B1V3PINT           1.402    0.045     31.210    1.402    0.921 
    B1V3PNEG           0.574    0.018     31.215    0.574    0.918 
 
R-SQUARE 
    Observed 
    Variable  R-Square 
 
    B1PC04A      0.373 
    B1PC04B      0.229 
    B1PC04C      0.492 
    B1PC04E      0.323 
    B1PC04F      0.644 
    B1PC04G      0.124 
    B1PC04J      0.312 
    B1PC04K      0.314 
    B1PC04M      0.204 
    B1PC04N      0.456 
    B1PC04R      0.609 
    B1PC04T      0.388 
    B1V3PDET     0.039 
    B1V3PINT     0.079 
    B1V3PNEG     0.082
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Longitudinal Models 
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Longitudinal Cross-lagged Models 
 

With longitudinal data of two waves or more, a useful strategy to investigate causal 
directionality between two variables is the cross-lagged panel model. 
 

• The model examines two variables, each predicting the other across time.  
 

• Paths from one variable to another are called cross-lagged paths.  Cross-lagged 
paths can be interpreted as prediction of the change in the dependent variable, 
because the initial value of the dependent variable is controlled.  

 
• A path from the same variable to itself over time is called a stability path.   

 
• Generally, correlations among exogenous variables and among endogenous 

disturbances are estimated.   
 

• With latent variables, correlated measurement errors over time must be used to 
avoid overestimation of longitudinal causal paths. 

 
• Because initial levels of each variable are controlled, this is a powerful design for 

investigating causal relationships with passive observational data.   
 
The most basic cross-lagged panel model uses only measured variables at each time 
point.   
 

• For two waves, this model is just identified (df=0), so no information about fit is 
available.  

 
• Equality constraints can be added, forcing the same paths to be equal at different 

time points (e.g., y1  y2 equals y2  y3).   
 
In Example 10 below, I examine whether negative regard leads to conflict or conflict 
leads to negative regard.  The following picture illustrates the model: 

b1v3pneg

b1p_conf

b2v3pneg

b2p_conf

b3v3pneg

b3p_conf
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Example 10: Cross-lagged Panel Model with Measured Variables 
 
Mplus input for a cross-lagged is shown below.  Because the variables used in this 
model are non-normal and have missing data, I illustrate the MLR estimator which is 
preferable in this case.  The WITH statement is optional, because the synchronous 
correlations are estimated by default.   
 

TITLE:  Example 10, Cross-lagged Panel Model with Measured Variables; 
 
DATA:  FILE=c:\jason\mplus\ehs\ex2.dat; 
               FORMAT=FREE; 
 
VARIABLE:  NAMES = program mrisk3 site c_maler mage race b3p35a    
    b3p35b b3p35c b3p35d b3p35e b2p35a b2p35b b2p35c    
 b2p35d b2p35e b1pc04a b1pc04b b1pc04c b1pc04e b1pc04f    
 b1pc04g b1pc04j b1pc04k b1pc04m b1pc04n b1pc04r b1pc04t    
 b1p69a b1p69b b1p69c b1p69d b1p69e b1p_cesd b1v3pdet  
b1v3pint b1v3pneg b2v3pdet b2v3pint b2v3pneg b3v3pdet b3v3pint  
 b3v3pneg b1p_conf b2p_conf b3p_conf; 
 
    MISSING = program-b3p_conf(-99,-6--1); 
 
    USEVARIABLES=b1v3pneg b2v3pneg b3v3pneg  
                 b1p_conf b2p_conf b3p_conf; 
 
ANALYSIS:   
   TYPE = MISSING H1; ESTIMATOR = MLR; MATRIX = COVARIANCE;  
 
 
MODEL:  ! Stability paths;   
        b2v3pneg ON b1v3pneg; 
        b3v3pneg ON b2v3pneg; 
        b2p_conf ON b1p_conf; 
        b3p_conf ON b2p_conf; 
        !Cross-lagged paths; 
        b2p_conf ON b1v3pneg; 
        b3p_conf ON b2v3pneg; 
        b2v3pneg ON b1p_conf; 
        b3v3pneg ON b2p_conf; 
        ! Synchronous Correlations; 
        b1v3pneg WITH b1p_conf; 
        b2v3pneg WITH b2p_conf; 
        b3v3pneg WITH b3p_conf; 
 
 
OUTPUT:  STANDARDIZED; 
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Output for Example 10:  Cross-lagged panel model with measured variables  
*** WARNING 
  Data set contains cases with missing on all variables. 
  These cases were not included in the analysis. 
  Number of cases with missing on all variables:  392 
   1 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS 
 
 
Example 10, Cross-lagged Panel Model with Measured Variables; 
 
SUMMARY OF ANALYSIS 
 
Number of groups                                                 1 
Number of observations                                        2609 
 
Number of dependent variables                                    4 
Number of independent variables                                  2 
Number of continuous latent variables                            0 
 
Observed dependent variables 
 
  Continuous 
   B2V3PNEG    B3V3PNEG    B2P_CONF    B3P_CONF 
 
Observed independent variables 
   B1V3PNEG    B1P_CONF 
 
Estimator                                                      MLR 
Information matrix                                        OBSERVED 
Maximum number of iterations                                  1000 
Convergence criterion                                    0.500D-04 
Maximum number of steepest descent iterations                   20 
Maximum number of iterations for H1                           2000 
Convergence criterion for H1                             0.100D-03 
 
Input data file(s) 
  c:\jason\mplus\ehs\ex2.dat 
 
Input data format  FREE 
 
 
SUMMARY OF DATA 
 
     Number of patterns          63 
 
 
COVARIANCE COVERAGE OF DATA 
 
Minimum covariance coverage value   0.100 
 
 
     PROPORTION OF DATA PRESENT 
 
 
           Covariance Coverage 
              B2V3PNEG      B3V3PNEG      B2P_CONF      B3P_CONF      B1V3PNEG 
              ________      ________      ________      ________      ________ 
 B2V3PNEG       0.688 
 B3V3PNEG       0.522         0.635 
 B2P_CONF       0.590         0.496         0.711 
 B3P_CONF       0.524         0.549         0.560         0.701 
 B1V3PNEG       0.570         0.512         0.553         0.536         0.750 
 B1P_CONF       0.538         0.484         0.576         0.550         0.618 
 
 
           Covariance Coverage 
              B1P_CONF 
              ________ 
 B1P_CONF       0.744 
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THE MODEL ESTIMATION TERMINATED NORMALLY 
 
TESTS OF MODEL FIT 
 
Chi-Square Test of Model Fit 
 
          Value                             53.558* 
          Degrees of Freedom                     4 
          P-Value                           0.0000 
          Scaling Correction Factor          1.433 
            for MLR 
 
*   The chi-square value for MLM, MLMV, MLR, WLSM and WLSMV cannot be used for 
    chi-square difference tests.  MLM, MLR and WLSM chi-square difference 
    testing is described in the Mplus Technical Appendices at www.statmodel.com. 
    See chi-square difference testing in the index of the Mplus User's Guide. 
 
Chi-Square Test of Model Fit for the Baseline Model 
 
          Value                            586.470 
          Degrees of Freedom                    14 
          P-Value                           0.0000 
 
CFI/TLI 
 
          CFI                                0.913 
          TLI                                0.697 
 
Loglikelihood 
 
          H0 Value                      -10168.283 
          H1 Value                      -10129.918 
 
Information Criteria 
 
          Number of Free Parameters             23 
          Akaike (AIC)                   20382.566 
          Bayesian (BIC)                 20517.501 
          Sample-Size Adjusted BIC       20444.423 
            (n* = (n + 2) / 24) 
 
RMSEA (Root Mean Square Error Of Approximation) 
 
          Estimate                           0.069 
 
SRMR (Standardized Root Mean Square Residual) 
 
          Value                              0.038 
 
 
 
MODEL RESULTS 
 
                   Estimates     S.E.  Est./S.E.    Std     StdYX 
 
 B2V3PNEG ON 
    B1V3PNEG           0.269    0.040      6.747    0.269    0.256 
    B1P_CONF           0.139    0.050      2.792    0.139    0.091 
 
 B3V3PNEG ON 
    B2V3PNEG           0.270    0.036      7.503    0.270    0.366 
    B2P_CONF           0.037    0.031      1.209    0.037    0.033 
 
 B2P_CONF ON 
    B1P_CONF           0.356    0.029     12.445    0.356    0.356 
    B1V3PNEG           0.042    0.019      2.237    0.042    0.061 
 
 B3P_CONF ON 
    B2P_CONF           0.418    0.029     14.385    0.418    0.424 
    B2V3PNEG          -0.008    0.018     -0.430   -0.008   -0.012 
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 B1V3PNEG WITH 
    B1P_CONF           0.009    0.011      0.856    0.009    0.022 
 
 B2V3PNEG WITH 
    B2P_CONF           0.014    0.011      1.233    0.014    0.030 
 
 B3V3PNEG WITH 
    B3P_CONF          -0.002    0.008     -0.234   -0.002   -0.006 
 
 Means 
    B1V3PNEG           1.451    0.017     82.920    1.451    1.839 
    B1P_CONF           1.722    0.012    141.131    1.722    3.174 
 
 Intercepts 
    B2V3PNEG           0.804    0.100      8.067    0.804    0.969 
    B3V3PNEG           0.831    0.070     11.835    0.831    1.360 
    B2P_CONF           1.034    0.055     18.966    1.034    1.903 
    B3P_CONF           0.969    0.054     18.073    0.969    1.812 
 
 Variances 
    B1V3PNEG           0.623    0.047     13.318    0.623    1.000 
    B1P_CONF           0.294    0.012     24.822    0.294    1.000 
 
 Residual Variances 
    B2V3PNEG           0.636    0.049     13.035    0.636    0.925 
    B3V3PNEG           0.323    0.030     10.898    0.323    0.863 
    B2P_CONF           0.256    0.011     22.765    0.256    0.869 
    B3P_CONF           0.235    0.011     21.710    0.235    0.821 
 
 
R-SQUARE 
 
    Observed 
    Variable  R-Square 
 
    B2V3PNEG     0.075 
    B3V3PNEG     0.137 
    B2P_CONF     0.131 
    B3P_CONF     0.179 
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Example 11 Cross-lagged Panel Model with Latent Variables 
 
In this example, I examine a two-wave cross-lagged model using one latent variable.  I 
use negative regard, detachment, and intrusiveness as indicators for a latent factor. 
Naturally, two latent variables or more than two waves can be used for this model as 
well.   
 
In the example below, I illustrate the use of equality constraints.  An important first step, 
which is not shown here, involves chi-square difference tests to see if these constraints 
on the loadings are appropriate (i.e., longitudinal invariance). 
 
It is also critical that correlated measurement errors be estimated for same items over 
time. 
 

TITLE:  Example 11, Cross-lagged Panel Model with Measured Variables; 
 
DATA:  FILE=c:\jason\mplus\ehs\ex2.dat; 
               FORMAT=FREE; 
 
VARIABLE:  NAMES = program mrisk3 site c_maler mage race b3p35a    
    b3p35b b3p35c b3p35d b3p35e b2p35a b2p35b b2p35c    
 b2p35d b2p35e b1pc04a b1pc04b b1pc04c b1pc04e b1pc04f    
 b1pc04g b1pc04j b1pc04k b1pc04m b1pc04n b1pc04r b1pc04t    
 b1p69a b1p69b b1p69c b1p69d b1p69e b1p_cesd b1v3pdet  
 b1v3pint b1v3pneg b2v3pdet b2v3pint b2v3pneg b3v3pdet b3v3pint  
 b3v3pneg b1p_conf b2p_conf b3p_conf; 
 
    MISSING = program-b3p_conf(-99,-6--1); 
 
    USEVARIABLES=b1v3pdet b1v3pint b1v3pneg  
       b3v3pdet b3v3pint b3v3pneg b1p_conf b3p_conf; 
 
ANALYSIS:   
   TYPE = MISSING H1; ESTIMATOR = MLR; MATRIX = COVARIANCE;  
 
 
MODEL:  ! Measurement model for 3-bag measure; 
        bag1 BY b1v3pdet*1 (1);  
        bag1 BY b1v3pint*1 (2); 
        bag1 BY b1v3pneg@1 (3); 
        bag3 BY b3v3pdet*1 (1); 
        bag3 BY b3v3pint*1 (2); 
        bag3 BY b3v3pneg@1 (3); 
    
        ! Stability paths;   
        bag3 ON bag1; 
        b3p_conf ON b1p_conf; 
 
        !Cross-lagged paths; 
        bag3 ON b1p_conf; 
        b3p_conf on bag1; 
 
        ! Synchronous Correlations; 
        bag1 WITH b1p_conf; 
        bag3 WITH b3p_conf; 
 
        ! Correlated Measurement Errors Over Time; 
         b1v3pdet b1v3pint b1v3pneg PWITH b3v3pdet b3v3pint b3v3pneg; 
 
 
OUTPUT:  STANDARDIZED; 
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Output for Example 11:  Cross-lagged Panel Model with Latent Variables 

*** WARNING 
  Data set contains cases with missing on all variables. 
  These cases were not included in the analysis. 
  Number of cases with missing on all variables:  463 
   1 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS 
 
 
Example 11, Cross-lagged Panel Model with Measured Variables; 
 
SUMMARY OF ANALYSIS 
 
Number of groups                                                 1 
Number of observations                                        2538 
 
Number of dependent variables                                    7 
Number of independent variables                                  1 
Number of continuous latent variables                            2 
 
Observed dependent variables 
 
  Continuous 
   B1V3PDET    B1V3PINT    B1V3PNEG    B3V3PDET    B3V3PINT    B3V3PNEG 
   B3P_CONF 
 
Observed independent variables 
   B1P_CONF 
 
Continuous latent variables 
   BAG1        BAG3 
 
Estimator                                                      MLR 
Information matrix                                        OBSERVED 
Maximum number of iterations                                  1000 
Convergence criterion                                    0.500D-04 
Maximum number of steepest descent iterations                   20 
Maximum number of iterations for H1                           2000 
Convergence criterion for H1                             0.100D-03 
 
Input data file(s) 
  c:\jason\mplus\ehs\ex2.dat 
 
Input data format  FREE 
 
 
SUMMARY OF DATA 
 
     Number of patterns          16 
 
 
COVARIANCE COVERAGE OF DATA 
 
Minimum covariance coverage value   0.100 
 
 
     PROPORTION OF DATA PRESENT 
 
 
           Covariance Coverage 
              B1V3PDET      B1V3PINT      B1V3PNEG      B3V3PDET      B3V3PINT 
              ________      ________      ________      ________      ________ 
 B1V3PDET       0.771 
 B1V3PINT       0.771         0.771 
 B1V3PNEG       0.771         0.771         0.771 
 B3V3PDET       0.527         0.527         0.527         0.654 
 B3V3PINT       0.527         0.527         0.527         0.654         0.654 
 B3V3PNEG       0.526         0.526         0.526         0.653         0.653 
 B3P_CONF       0.551         0.551         0.551         0.565         0.565 
 B1P_CONF       0.635         0.635         0.635         0.498         0.498 
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           Covariance Coverage 
              B3V3PNEG      B3P_CONF      B1P_CONF 
              ________      ________      ________ 
 B3V3PNEG       0.653 
 B3P_CONF       0.565         0.721 
 B1P_CONF       0.498         0.565         0.765 
 
THE MODEL ESTIMATION TERMINATED NORMALLY 
 
TESTS OF MODEL FIT 
 
Chi-Square Test of Model Fit 
 
          Value                             41.498* 
          Degrees of Freedom                    15 
          P-Value                           0.0003 
          Scaling Correction Factor          1.246 
            for MLR 
 
*   The chi-square value for MLM, MLMV, MLR, WLSM and WLSMV cannot be used for 
    chi-square difference tests.  MLM, MLR and WLSM chi-square difference 
    testing is described in the Mplus Technical Appendices at www.statmodel.com. 
    See chi-square difference testing in the index of the Mplus User's Guide. 
 
Chi-Square Test of Model Fit for the Baseline Model 
 
          Value                           1109.655 
          Degrees of Freedom                    28 
          P-Value                           0.0000 
 
CFI/TLI 
 
          CFI                                0.976 
          TLI                                0.954 
 
Loglikelihood 
 
          H0 Value                      -15568.382 
          H1 Value                      -15542.538 
 
Information Criteria 
 
          Number of Free Parameters             29 
          Akaike (AIC)                   31194.763 
          Bayesian (BIC)                 31364.098 
          Sample-Size Adjusted BIC       31271.957 
            (n* = (n + 2) / 24) 
 
RMSEA (Root Mean Square Error Of Approximation) 
 
          Estimate                           0.026 
 
SRMR (Standardized Root Mean Square Residual) 
 
          Value                              0.028 
 
MODEL RESULTS 
 
                   Estimates     S.E.  Est./S.E.    Std     StdYX 
 
 BAG1     BY 
    B1V3PDET           0.339    0.049      6.962    0.246    0.249 
    B1V3PINT           0.858    0.109      7.833    0.623    0.499 
    B1V3PNEG           1.000    0.000      0.000    0.727    0.921 
 
 BAG3     BY 
    B3V3PDET           0.339    0.049      6.962    0.168    0.276 
    B3V3PINT           0.858    0.109      7.833    0.424    0.550 
    B3V3PNEG           1.000    0.000      0.000    0.495    0.810 
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 BAG3     ON 
    BAG1               0.264    0.038      6.887    0.388    0.388 
 
 BAG3     ON 
    B1P_CONF           0.057    0.032      1.766    0.116    0.063 
 
 B3P_CONF ON 
    BAG1               0.011    0.020      0.559    0.008    0.015 
 
 B3P_CONF ON 
    B1P_CONF           0.269    0.029      9.342    0.269    0.273 
 
 BAG1     WITH 
    B1P_CONF           0.013    0.011      1.121    0.018    0.033 
 
 BAG3     WITH 
    B3P_CONF          -0.005    0.008     -0.623   -0.010   -0.019 
 
 B1V3PDET WITH 
    B3V3PDET           0.168    0.024      6.895    0.168    0.281 
 
 B1V3PINT WITH 
    B3V3PINT           0.135    0.025      5.514    0.135    0.141 
 
 B1V3PNEG WITH 
    B3V3PNEG          -0.019    0.024     -0.769   -0.019   -0.039 
 
 Means 
    B1P_CONF           1.722    0.012    140.379    1.722    3.172 
 
 Intercepts 
    B1V3PDET           1.618    0.022     72.094    1.618    1.640 
    B1V3PINT           2.488    0.028     89.714    2.488    1.994 
    B1V3PNEG           1.453    0.018     82.460    1.453    1.843 
    B3V3PDET           1.207    0.023     52.345    1.207    1.989 
    B3V3PINT           1.504    0.049     30.805    1.504    1.948 
    B3V3PNEG           1.183    0.056     21.164    1.183    1.937 
    B3P_CONF           1.207    0.049     24.479    1.207    2.259 
 
 Variances 
    B1P_CONF           0.295    0.012     24.764    0.295    1.000 
    BAG1               0.528    0.079      6.664    1.000    1.000 
 
 Residual Variances 
    B1V3PDET           0.913    0.052     17.486    0.913    0.938 
    B1V3PINT           1.169    0.063     18.681    1.169    0.751 
    B1V3PNEG           0.094    0.066      1.425    0.094    0.151 
    B3V3PDET           0.341    0.034     10.162    0.341    0.924 
    B3V3PINT           0.416    0.030     13.652    0.416    0.698 
    B3V3PNEG           0.128    0.034      3.827    0.128    0.344 
    B3P_CONF           0.264    0.012     21.407    0.264    0.925 
    BAG3               0.207    0.038      5.464    0.844    0.844 
 
R-SQUARE 
    Observed 
    Variable  R-Square 
 
    B1V3PDET     0.062 
    B1V3PINT     0.249 
    B1V3PNEG     0.849 
    B3V3PDET     0.076 
    B3V3PINT     0.302 
    B3V3PNEG     0.656 
    B3P_CONF     0.075 
 
     Latent 
    Variable  R-Square 
 
    BAG3         0.156 
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Latent Growth Curve Models 
 
Longitudinal models that trace the growth or decline of individuals over time can also be 
tested with SEM.  The approach is an extension of growth curve models tested using a 
hierarchical linear modeling (e.g., Raudenbush & Bryk, 2002), and possesses several 
advantages.  More flexible error structures can be specified and more complex models 
can be tested.  The model can also be extended to incorporate latent variables at each 
time point, leading to more accurate estimates of growth.  
 
In general, growth curve analysis models individual trajectories of change.  For linear 
models, each individual has a predicted intercept and slope.  Researchers are not only 
interested in the average intercept and slope for the sample but also the extent to which 
intercepts and slopes vary across individuals.  The following hypothetical graph of 
individual slopes for the change in conflict over time is illustrative.  

Time

Conflict

14 mos 24 mos 36 mos

The heavy line represents an average change over time for the sample.  The thinner 
lines represent predicted change for 4 individuals from the data set.   Notice that there is 
considerable variability in the level of conflict across participants at 14 months and there 
is considerable variability in how conflict changes over the 22 months.  Growth curve 
models provide estimates of the variability of baseline scores and variability of change 
over time in addition to average baseline values and average change over time. 
 
 The figure below represents the basic specification for a latent growth curve model of 
conflict with three time points.   

Intercept Slope

b3p_confb2p_confb1p_conf

1 1
1

1
0

2

 
As illustrated, measurement is an indicator for both the intercept and the slope latent 
variable.   

• Special instructions are given to obtain means for the latent variables (called 
“meanstructures”), which provide information about average baseline values and 
average slopes.   

 
• The loadings are constrained to particular values, and the loadings shown above 

represent the most common loadings used (although others are possible).  
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• By setting the loadings for the slope factor to 0, 1, 2, the mean for the slope 
factor represents average linear growth.   

 
• Because zero is chose as the first loading, the mean of the intercept factor has a 

special meaning—it is the average value at the first time point. 
 

• The correlation between the intercept and slope provides information whether the 
initial value is associated with the rate of change (e.g., Are those with higher 
conflict at 14 mos more likely to decline in conflict?). 

 
Example 12:  Latent Growth Curve Model 
 
Specifying these models in Mplus requires few additional syntax elements.  The only 
new specification involves meanstructures.  First, TYPE = MEANSTRUCTURE is 
needed on the analysis command (here I also use missing data estimation). Second, to 
refer to means or intercepts (i.e., the term used for the mean if the variable is predicted 
by another variable), square brackets, [ ] ,are used.  In general, means for the latent 
variables are freely estimated (no @ sign is use) while intercepts for the indicators are 
set to zero.  

 
TITLE:  Example 12, Latent Growth Curve Analysis; 
 
DATA:  FILE=c:\jason\mplus\ehs\ex2.dat; 
               FORMAT=FREE; 
 
VARIABLE:  NAMES = program mrisk3 site c_maler mage race b3p35a    
    b3p35b b3p35c b3p35d b3p35e b2p35a b2p35b b2p35c    
 b2p35d b2p35e b1pc04a b1pc04b b1pc04c b1pc04e b1pc04f    
 b1pc04g b1pc04j b1pc04k b1pc04m b1pc04n b1pc04r b1pc04t    
 b1p69a b1p69b b1p69c b1p69d b1p69e b1p_cesd b1v3pdet  
b1v3pint b1v3pneg b2v3pdet b2v3pint b2v3pneg b3v3pdet b3v3pint  
 b3v3pneg b1p_conf b2p_conf b3p_conf; 
 
    MISSING = program-b3p_conf(-99,-6--1); 
 
    USEVARIABLES=b1p_conf b2p_conf b3p_conf; 
 
ANALYSIS:   
   TYPE = MEANSTRUCTURE MISSING H1; ESTIMATOR = ML; MATRIX = 
COVARIANCE;  

 
MODEL: intrcept BY b1p_conf@1 b2p_conf@1 b3p_conf@1; 
       slope BY b1p_conf@0 b2p_conf@1 b3p_conf@2; 
       intrcept WITH slope; 
       [intrcept slope]; 
       [b1p_conf@0 b2p_conf@0 b3p_conf@0]; 
 
OUTPUT:  STANDARDIZED; 

 
There is a shortcut specification on the model statement that produces the exact same 
results: 

MODEL: intrcept slope |  b1p_conf@0 b2p_conf@1 b3p_conf@2; 
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Output for Example 12:  Latent Growth Curve Model 
 
SUMMARY OF ANALYSIS 
 
Number of groups                                                 1 
Number of observations                                        2457 
 
Number of dependent variables                                    3 
Number of independent variables                                  0 
Number of continuous latent variables                            2 
 
Observed dependent variables 
 
  Continuous 
   B1P_CONF    B2P_CONF    B3P_CONF 
 
Continuous latent variables 
   INTRCEPT    SLOPE 
 
Estimator                                                       ML 
Information matrix                                        OBSERVED 
Maximum number of iterations                                  1000 
Convergence criterion                                    0.500D-04 
Maximum number of steepest descent iterations                   20 
Maximum number of iterations for H1                           2000 
Convergence criterion for H1                             0.100D-03 
 
Input data file(s) 
  c:\jason\mplus\ehs\ex2.dat 
 
Input data format  FREE 
 
 
SUMMARY OF DATA 
 
     Number of patterns           7 
 
COVARIANCE COVERAGE OF DATA 
 
Minimum covariance coverage value   0.100 
 
 
     PROPORTION OF DATA PRESENT 
 
 
           Covariance Coverage 
              B1P_CONF      B2P_CONF      B3P_CONF 
              ________      ________      ________ 
 B1P_CONF       0.790 
 B2P_CONF       0.611         0.755 
 B3P_CONF       0.584         0.595         0.744 
 
 
THE MODEL ESTIMATION TERMINATED NORMALLY 
 
 
TESTS OF MODEL FIT 
 
Chi-Square Test of Model Fit 
 
          Value                              0.704 
          Degrees of Freedom                     1 
          P-Value                           0.4015 
 
Chi-Square Test of Model Fit for the Baseline Model 
 
          Value                            505.591 
          Degrees of Freedom                     3 
          P-Value                           0.0000 
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CFI/TLI 
          CFI                                1.000 
          TLI                                1.002 
 
Loglikelihood 
          H0 Value                       -4255.880 
          H1 Value                       -4255.528 
 
Information Criteria 
 
          Number of Free Parameters              8 
          Akaike (AIC)                    8527.761 
          Bayesian (BIC)                  8574.214 
          Sample-Size Adjusted BIC        8548.796 
            (n* = (n + 2) / 24) 
 
RMSEA (Root Mean Square Error Of Approximation) 
 
          Estimate                           0.000 
          90 Percent C.I.                    0.000  0.050 
          Probability RMSEA <= .05           0.950 
 
SRMR (Standardized Root Mean Square Residual) 
 
          Value                              0.005 
 
 
MODEL RESULTS 
                   Estimates     S.E.  Est./S.E.    Std     StdYX 
 
 INTRCEPT BY 
    B1P_CONF           1.000    0.000      0.000    0.357    0.658 
    B2P_CONF           1.000    0.000      0.000    0.357    0.658 
    B3P_CONF           1.000    0.000      0.000    0.357    0.667 
 
 SLOPE    BY 
    B1P_CONF           0.000    0.000      0.000    0.000    0.000 
    B2P_CONF           1.000    0.000      0.000    0.184    0.340 
    B3P_CONF           2.000    0.000      0.000    0.368    0.689 
 
 INTRCEPT WITH 
    SLOPE             -0.025    0.009     -2.866   -0.374   -0.374 
 
 Means 
    INTRCEPT           1.726    0.012    149.716    4.837    4.837 
    SLOPE             -0.026    0.008     -3.430   -0.143   -0.143 
 
 Intercepts 
    B1P_CONF           0.000    0.000      0.000    0.000    0.000 
    B2P_CONF           0.000    0.000      0.000    0.000    0.000 
    B3P_CONF           0.000    0.000      0.000    0.000    0.000 
 
 Variances 
    INTRCEPT           0.127    0.014      8.847    1.000    1.000 
    SLOPE              0.034    0.007      4.582    1.000    1.000 
 
 Residual Variances 
    B1P_CONF           0.167    0.015     11.226    0.167    0.567 
    B2P_CONF           0.182    0.008     23.012    0.182    0.619 
    B3P_CONF           0.121    0.014      8.500    0.121    0.424 
 
 
R-SQUARE 
 
    Observed 
    Variable  R-Square 
 
    B1P_CONF     0.433 
    B2P_CONF     0.381 
    B3P_CONF     0.576 
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Other Latent Growth Curve Analyses 
 

There are many other growth curve applications that I will not have time to cover in 
detail. However, below I list just a few ideas that you should be able to do, given the 
other modeling knowledge you have gained here. 
 

• Intercepts and slopes as outcomes.  Any number of predictors and covariates 
can be used to explain variation in intercepts and slopes.  For example, perhaps 
the mother’s age is a significant predictor of initial values of conflict or change in 
conflict over time. 

 
• Intercepts and slopes as predictors.  An advantage of latent growth curve models 

over HLM (multilevel regression) is that intercepts and slope variables can be 
used as predictor variables.  Perhaps increases in conflict lead to educational 
problems for the children later. 

 
• Multi-group analyses.  Growth curves can be compared across groups if there is 

a naturally categorical grouping variable (e.g., race). Perhaps there are differnces 
among White, Black, and Hispanic families in terms of the initial values or growth 
in conflict over time.  

 
• Time-varying covariates.  Predictors of the outcome at each measurement point 

can also be incorporated, and this may provide interesting theoretical findings or 
more accurate estimates of growth over time.  For example, mother’s depression 
level at each time point might be used as a predictor of conflict at each time 
point, thus providing estimates of conflict initial values and growth that have been 
adjusted for depression level. 

 
• The new PLOT feature on the OUTPUT command can be used to view individual 

growth curves (See Chapter 17, pp.464-472, of the Mplus 3 User’s Guide) 
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Technical Note #4: Some Recommended Readings on Longitudinal Analysis  
 
General 
 
Cook, T.D., & Campbell, D.T. (1979).  Quasi-experimentation:  Design and analysis for field settings.  
Boston:  Houghton Mifflin. 
 
Dwyer, J.H.  (1983).  Statistical models for the social and behavioral sciences.  New York:  Oxford 
University Press. 
 
Chapter 1.  Kenny, D.A. (1979).  Correlation and causation.  New York:  Wiley. 
 
Menard, S. (2002).  Longitudinal research (2nd Edition).  Thousand, Oaks:  Sage (QASS #76).   
 
Rogosa, D. R. (1995). Myths and methods: "Myths about longitudinal research," plus supplemental 
questions. In J. M. Gottman, (Ed.), The analysis of change (pp. 3-66) Hillsdale, New Jersey: Lawrence 
Erlbaum Associates. 
 
Taris, T.W. (2000).  A primer in longitudinal data analysis. London:  Sage.   
 
 
Regression 
 
Chapter 15:  Longitudinal regression models.  Cohen, J., Cohen, P., West, S.G., & Aiken, L.S. (2003).  
Applied multiple regression/correlation analysis for the behavioral sciences (3rd Edition).   Wahwah, NJ:  
Erlbaum.   
 
Campbell, D.T., & Kenny, D.A. (1999).  A primer on regression artifacts.  New York:  The Guilford Press. 
 
Cross-lagged Panel Models  

Finkel, S.E. (1995). Causal analysis with panel data. Thousand Oaks, CA: Sage. (QASS #105).  

Gollob, H.F., & Reichardt, C.S. (1991). Interpreting and estimating effects assuming time lags really 
matter.  In L. Collins & J. Horn (Eds.), Best methods for the analysis of change (pp. 243-259).  

Kessler, R.C., Greenberg, D.F. (1981).  Linear panel analysis: Models quantitative change.  New York: 
Academic Press.  

Latent Growth Curve Analysis  
 
Duncan, T.E., Duncan, S.C., Stycker, L.A., Fuzhong, L., & Alpert, A.  (1999).  An introduction to latent 
variable growth curve modeling:  Concepts, issues, and applications.  Mahwah, NJ:  Erlbaum. 
 
Singer, J.D., & Willett, J.B. (2003). Applied longitudinal data analysis: Modeling change and event 
occurrence.  New York:  Oxford University Press. 
 
Willet, J.B., & Sayer, A.G. (1994).  Using covariance structure analysis to detect correlates and predictors 
of change. Psychological Bulletin, 116, 363-381.   
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Other Topics in SEM 
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Multigroup Analysis 
 

 There are two approaches to testing moderator (i.e., interaction) hypotheses in 
SEM.  The most common approach is to compare models in two groups. This can be 
done in what is called a multigroup analysis or sometimes called a stacked model.  It is 
possible to test a model in two or more groups simultaneously and make statistical 
comparisons across groups. 
 
Females 

Self-
Efficacy

Life
Events

Social 
Support -

Depression

 Males 

Self-
Efficacy

Life
Events

Social 
Support

0
Depression

 
• One or more paths are constrained to be equal across groups, and the fit of the 

constrained model is compared to the fit of the unconstrained model. 
 
• The entire model can also be compared.   
 
• Measurement models can be tested for invariance across groups.  This can be 

complicated and tricky business (e.g., Cheung & Rensvold, 1999; Millsap, 1995), 
but it is important to establish that measurement characteristics are the same 
across groups before making inferences about predictive paths.   

 
• Different models with the same variables can be tested in the two groups. 
 
• Multigroup analysis is not available for mixture models (although see the 

KNOWNCLASS option), EFA, or logistic regression. 
 
• Chapter 13, pp. 296-307 of the Mplus 3 User’s guide provides specification 

details for multigroup models.  
 
 

 



Newsom  Page  
EHS Mplus Workshop 2004  

89

Other advanced capabilities in Mplus 
 
Latent variable interactions.  Mplus 3 includes a special preprogrammed approach 
to latent variable interaction using the Klein & Moosbruger (2000) full-information 
maximum likelihood approach.  This method seems to work well for approximate N > 
300. See p. 61-62 of the Mplus 3 User’s guide for an example. 
 
Latent class analysis. Mplus has special features for confirmatory factor analysis 
with categorical latent variables, known as “latent class analysis”.  Continuous, 
binary, or ordered categorical indicators can be used to define the latent class 
variable.  Akin to cluster analysis, the main purpose is to identify subgroups of 
individuals defined by the set of indicator variables. See Chapter 7 of the Mplus 3 
User’s guide for more details.    
 
Mixture modeling. The term “mixture modeling” refers to structural equation models 
that use latent class variables.  Mplus allows integration of latent class variables in 
virtually any type of model (e.g., multi-group models, growth models). See Chapter 7 
of the Mplus 3 User’s guide for more details.    
 
Poisson and zero-inflated Poisson variables.  Count variables that are highly 
skewed require special estimators (using the Poisson distribution).  can be analyzed 
by –using count variables with many zero frequencies (e.g. drug use).  The COUNT 
statement is used under the VARIABLE command to designate such variables.  
These variables can be incorporated into most other types of Mplus models.  See 
pp. 25-26, 336, 340 of the Mplus 3 User’s guide. 
 
Discrete time survival analysis.  Muthen and Masyn (in press) have shown how to 
use latent class variables to test discrete-time survival models—a longitudinal 
analysis that has not been available in a structural equation framework before.  See 
pp. 179-181 of the Mplus 3 User’s guide. 
 
Multilevel regression and multilevel structural models.  Mplus is also capable of 
testing mulitilevel regression (HLM) models designed for hierarchically structured 
data and growth models that are usually analyzed with packages such as HLM, 
MLWIN, and SAS Proc Mixed.  Mplus has special features for extending 
hierarchically structured models to multilevel confirmatory factor models, path 
models, and structural models. See Chapter 9 of the Mplus 3 User’s guide.   
 
Complex sampling. Mplus is the only SEM package that has incorporated 
methodology for adjusting parameters and standard errors for cluster or stratified 
survey sampling designs.  Weight variables with or without design specifications can 
be used. See Chapter 9 of the Mplus 3 User’s guide.   
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 Web Resources 
 

MPlus  
 

Free lecture movies at UCLA statistics site: 
 
More Mplus oriented: 

 
http://www.ats.ucla.edu/stat/seminars/
 

More statistical in nature: 
 
http://www.ats.ucla.edu/stat/seminars/ed231e/

 
Technical appendices for Mplus user’s guide provides details on estimators, missing 
data, complex sampling designs, and other topics. 

 
http://www.statmodel.com/mplus/techappen.pdf
 

Many examples of simple and advanced analyses with Mplus: 
 
http://www.statmodel.com/mplus/examples/
 

Tutorial from the University of Texas research consulting site: 
 
http://www.utexas.edu/its/rc/tutorials/stat/mplus/
 
 
 

SEM in General 
 
 

SEMNET Discussion List and Archive 
http://www.gsu.edu/~mkteer/semnet.html

 
Dave Kenny’s site (great didactic information on SEM and other statistical topics) 

http://users.rcn.com/dakenny/causalm.htm
 

Ed Rigdon’s site (many SEM links) 
http://www.gsu.edu/~mkteer/index.html
 

Patrick Curran’s website (growth curve models): 
http://www.unc.edu/~curran/
 

Jason Newsom’s SEM references page: 
http://www.ioa.pdx.edu/newsom/semrefs.htm

http://www.ats.ucla.edu/stat/seminars/
http://www.ats.ucla.edu/stat/seminars/ed231e/
http://www.statmodel.com/mplus/techappen.pdf
http://www.statmodel.com/mplus/examples/
http://www.utexas.edu/its/rc/tutorials/stat/mplus/
http://www.gsu.edu/~mkteer/semnet.html
http://users.rcn.com/dakenny/causalm.htm
http://www.gsu.edu/~mkteer/index.html
http://www.unc.edu/~curran/
http://www.ioa.pdx.edu/newsom/semrefs.htm
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EHS Example Data Set 1 
 
EHSID  Identification number 
PROGRAM  Program Group? (0=Comparison, 1=Program) 
MRISK3  Risk group: 1=0-2, 2=3, 3=4-5 risks 
SITE  Site code 
C_MALER  1= Focus Child is Male: For Regr 
MAGE  Age of Mother at Rand Asn (years) (trk) 
RACE  White, Black, Hisp, Other 
B3P35A  conf1-fights 
B3P35B  conf2-lose tempers 
B3P35C  conf3-get angry 
B3P35D  conf4-criticize 
B3P35E  conf5-hit 
B2P35A  conf1-fights 
B2P35B  conf2-lose tempers 
B2P35C  conf3-get angry 
B2P35D  conf4-criticize 
B2P35E  conf5-hit 
B1PC04A  cesd1-bothered 
B1PC04B  cesd2- eating 
B1PC04C  cesd3- blues 
B1PC04E  cesd4- mind on things 
B1PC04F  cesd5- depressed 
B1PC04G  cesd6- effort 
B1PC04J  cesd7- fearful 
B1PC04K  cesd8- restless 
B1PC04M  cesd9- talked less 
B1PC04N  cesd10- felt lonely 
B1PC04R  cesd11- felt sad 
B1PC04T cesd12-not get going 
B1P69A  conf1-fights 
B1P69B  conf2-lose tempers (R) 
B1P69C  conf3-get angry 
B1P69D  conf4-criticize 
B1P69E  conf5-hit 
B1P_CESD  14m CES-Depression total scale 
B1V3PDET  14m Parent Detachment 3-bag 
B1V3PINT  14m Parent Intrusiveness3-bag 
B1V3PNEG  14m Parent Negative Regard 3-bag 
B2V3PDET  24m Parent Detachment 3-bag 
B2V3PINT  24m Parent Intrusiveness 3-bag 
B2V3PNEG  24m Parent Negative Regard 3-bag 
B3V3PDET  36m Parent Detachment 3-bag 
B3V3PINT  36m Parent Intrusiveness3-bag 
B3V3PNEG  36m Parent Negative Regard 3-bag 
B1P_CONF  14m FES CONFLICT 
B2P_CONF  24m FES CONFLICT 
B3P_CONF  36m FES CONFLICT 
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