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Appendix A Notation

The structural modeling notation system I use for this book follows a traditional system
that uses Greek symbols for each of the parameters based on a matrix organizing principle,
usually referred as LISREL notation, short for "Llnear Structural RElations" (Frisch &'Waugh, 1933). The general SEM model and notation system is perhaps more accurarely
called the JKtUf model, after the authors credited with synthesizing and expanding decades
of prior work on path analysis and factor analysis into a highly generalizable strucure
equation framework (Jdreskog, l973;Keesling,1,972;'!7iley, 1973l.The LISREL rerm has
become primarily associated with the software developed byJdreskog and Stirbom (1974),
but the notation system has become widely applied regardless of the SEM software pack-
age used.l I use LISREL notation throughout the book for one very important reason: a
large majority of statistical articles about SEM use this notation. Many introductory text-
books now avoid LISREL notation in order to increase accessibility which is indeed an
objective I sympathize with. For those who wish to learn more about SEM after an initial
introduction, however, unfamiliariry with the LISREL notation system leaves readers with
what I believe to be a serious literacy gap.

Although LISREL notation is tied to matrix algebra, it is really not necessary to know
matrix algebra to read and understand this book. Matrix algebra, a kind of shorthand
system that can be used for manipulating many simultaneous equations, is convenient for
describing the linear regression equations used in SEM. Learning the Greek symbols asso-
ciated with the LISREL notation is a separate matter from understanding marrix algebra
and is, at least, an initial step. I do encourage the reader to learn matrix algebra to increase
the understanding of this topic and to better understand some of the mathematical under-
pinnings of SEM. There are a fairly limited number of definitions and simple algebra rules
that can be absorbed with a small investment in effort. I do not provide an introduction to
matrix algebra with this text, because there are many excellent introductions (e.g., Bollen,
1 989; Hayduk, 7987 ; Mulaik, 2009; Namboodiri, 19 84).

*All-y" LISREL Notation

Most of the formulas in this book use an abbreviated version of the full LISREL norarion
that is commonly used by authors and easier to learn. The full LISREL notation sysrem
(described later in this appendix) distinguishes befween exogenous variables and endogen-
ous variables. Exogenous variable are"not caused by other variables in the model and
endogenous variables are those caused by other variables in the model.

Me asuretnent Mo del Parameters

Table A.1 is a summary of all of the Greek symbols used in the LISREL model. Each latent
variable is designated by q ("eta"). In this text, I will index latent variables with subscript

Newsom, J.T. (2015). Longitudinal Structural Equation Modeling: A Comprehensive Introduction.New York: 
Routledge.
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Table A.L All-y LISREL Notation
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Variances and covariances of latent variables
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Measurement residual variances
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Latent variables
Structural disturbances
Latent variable means
Measurement intercepts
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&, up to a total of K latent variables in the model. Observed variables will be indexed with

f, and there are / total observed variables in model. Loadings, )tp ("lambda"), represent

a regression of a measured variable y, on factor r.11, using subscript iA to indicate the lth
observed variable is predicted by the Ath latent variable. The "effect" always precedes the

"cause" in the order of subscripts for loadings (and structural paths). The intercept in this

regression is v ("nu") with subscript 1tU7e can then write an equation for a simple regres-

sion that represents the relation of the observed variable to the factor.

!i=vi+)urno+e,
'We could add an index i representing an individual case in the data set for the observed

variable !;i,the latent variable [p;, and the measurement residual (or error term) eo, but

I omit this in most instances to simplify the notation as much as possible.

The individual parameters are organized into matrices or vectors, matrices with one

column (or, if transposed, a row). Capital letters (bolded in this text) are used to rePresent

each matrix. Loadings are organized into a matrix with / rows and K columns, said to

be of dimension ,/ x 1. Each entry in the loading matrix represents the intersection of an

observed variable and a factor. For example, a model with two latent variables with three

indicators loading on each factor would be a 6x2 A matrix, with rows corresponding.to
observed variabli-s lrrlzrlsryoryr,andyrrandcolumns corresponding to latent variables

qt and r72.
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The 0s show that the indicator loading is set equal to 0, or, in other words, does not load

on that factor.
The measurement residuals are organized into a square matrix €| ("theta") ryitq 
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might have a 6 x 6 O matrix that looks like the
residuals were freely estimated and one covariance

@-

orrorr o o o o

orrorr. o o o o

0 0 0rr 0 0 0

o 0 0ooo0 0

0 0 0 0 0rr0

0 0 00 0 0r,

The observed variables and the latent variables are vectors (single-column matrix) with
/ and K rows, respectively. The factor variances and covariances have the symbol t/r ("psi")
and appear in the Y matrix, which is square with dimension KxK. The diagonal elem-
ents are the variances and the off-diagonal elements are the covariances. If the two-factor
example estimated both factor variances and the covariance, the Y matrix would be

v=[%' "lLVn Vzz)

The measurement model states the covariance matrix in terms of these matrices:

E(e;= ArYA'+@

The prime symbol 'indicates the A matrix is transposed (rows and columns are switched).
Factor means, ap ('alpha") and measurement intercepts, yt are not included in the meas-

urement equation above, but they can be added to the model. Each is a vector of the same

name in the matrix system, c and v, respectively.

Stnt ctural Mo de I Paratn e te rs

The structural portion of the model involves paths berween latent variables, represented
by B ("beta"). Although p is used to represent a standardized coefficient in some regres-
sion texts, it represents a unstandardized coefficient here. I will use B" for a standardized
coefficient instead. The order of the subscripts is such that the dependent, or "effect",
variable precedes the predictor or "cause" variable. For example , a path for 42 predicted
by 41 would be labeled B2r.The path coefficients are organized into the B matrix, with
the dimensions K x K. Naturally many of the elements will be 0 in practice, because usu-
ally only one direction can be estimated in practice. Disturbances (residuals, errors) in
the structural model are represented by ( ("zeta"). Disturbances may appear as a vector
of individual parameters (. Because dependent variables have only conditional variances,
the variances of the disturbances are diagonal elements in the Y matrix, where Yar(()=ty.
Covariances of disturbances, Cov((,(), are off-diagonal elements in the Y matrix.

The formal LISREL notation system assumes only structural relations among latent
variables not between observed variables or between latent variables and observed vari-
ables. Each observed variable must be an indicator of a latent variable, even if there is only
one indicator per latent varlable (identified by setting the loading equal to 1 and the meas-

urement residual equal to 0). Most SEM software packages, however, allow structural
paths between measured variables and measured and latent variables. As a consequence,
many articles and texts allow structural paths directly between observed variables and
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Figure A.7 AII-y LISREL Notation.

latent variables. This convenience has no impact on the underlying mathematics, however.
I therefore use r and y in equations when there are structural relations among them (pre-
dictive paths or correlations) and show them within squares with direct relations to latent
or other observed variables in figures.

Path Diagrams

Figure A.1 summarizes the notation in the depiction of one possible model. Notice that
when variable numbers have two digits, a comma is used to separate subscript num-
ber pairs (e.g., ltr,o). I follow most of the usual path diagram conventions for structural
models. One exception is that I do not represent means and intercepts as triangles in the
diagrams as in the RAM diagram approach (McArdle & McDonald,7984),primarily to
simplify the diagrams of some of the rather complex models in some chapters. Instead,
when means or intercepts are estimated in the model,I depict this by placing the symbol
next to the ellipse (latent means and intercepts) or rectangle (measurement intercept).2 For
variances, V/& appears next to the circle or rectangle in a similar fashion.

'!7hen 
a parameter is to be set to a specific value, such as 0 or 1, the number appears in

the diagram in the location in which the parameter normally appears. Mean or intercept
values are in square brackets to distinguish them. Figure A.1 illustrates rhe use of specific
values, where the first loading is set equal to 1 and the measurement intercept is set equal
to 0, shown as [0]. These are commonly used values for the referent or marker method of
identifying the factor variance and mean.

Full Matrix Notation

The "all-y" notation is commonly used by authors, but its use is not universal. The ori-
ginal and more formal LISREL system involves separate matrices for exogenous and
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Table A.2 Full LISREL Notation

Exogenous
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English
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Exogenous Description
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Figure A.2 Full LISREL Notation.

endogenous parameters. Exogenous variables,are those not predicted by other variables in
the model and endogenous variables are those predicted by other variables. This distinc-
tion usually can be dropped without loss of generaliry but rhe full notation is needed for
clarity in some instances. To simplify as much as possible, I use the "all-y" system when-
ever possible. \

Table A.2 summarizes all the symbols and matrices used for the full LISREL nota-
tion. Each parameter has a separate notation for the parameter and accompanying matrix
depending on the role of the variable as exogenous or endogenous in the modil. Even
when observed variables, x, are used as indicators of exogenous variables, and are there-
fore predicted by another variable, they are still considered exogenous in the model under
the notation system. The symbols used for the endogenous parameters, sometimes with
added y subscript, are the same as in the "all-y" system, but exogenous parame[ers and
matrices use the following symbols: @ and @ for latent variable variances and covariances,
)', and rlo for loadings, 06 and @6 for measurement residual variances and covariances, K
and K for latent variable means, and v" and v* for measurement intercepts. Figure A.2
depicts the full LISREL notarion version of the same model shown in Figure A.1.

Other Noution Details Specific to this Text

My preference is to avoid subscripts wherever possible. Ifhen the indexing is obvious or
not necessarS I omit subscripts. For instance, I refer to an observed variable as y instead of
yr, omitting the subscript because it can be assumed that a variable varies across individual
cases in the data set unless otherwise indicated. Admittedly, there is imprecision in doing
this and potential confusion, but I believe the benefits of simplicity outweigh the costs.

The following subscripts are used whenever indexing is needed: i for individualcaie,
i for the lth observed variable, A for the Ath factor, and t for the time point. For multiple
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groups, g is used to designate a group-specific value. Although this does not ever occur in
the text, a full example would be to refer to an observed variable as ltiihet for an observed
score y at time point f, for case l, on observed variable l, loading on factor A, in group g.
'!7here 

any of these are understood or not necessary, they will be omined. For example,
where there is only one observed variable or one factor and the context is clear, I will
omit the i subscript for a particular observed variable, and/or the A subscript referring to
a particular factor. If the data are cross-sectional, I will omit the t subscript. Likewise, for
most formulas,I will omit subscripts from Greek LISREL matrix symbols when the all-y
format is used or when the reference is easily understood from the context (e.g.,4 will be
simply L, and )u, will be simply,l,). To refer to a parameter being held constant across time
points, such as a survey question that has been repeated over time, I will use a subscript
in parentheses, as in (-) or (1).

For any references to regression analysis or logistic regression analysis, I use p instead
of b to refer to unstandardized coefficients. I do this in part to reduce the number of dif-
ferent symbols used overall but also to emphasize the equivalence of regression coefficients
and path coefficients from a structural eqpation model. Primes,', are used to distinguish
between estimates obtained with referent and factor identification (mainly in Chapter 1),
and should not be confused with the transpose operation that is used in matrix algebra
(which appears in a few places in the text as well, but only next to a matrix). To denote an
indicator that is not equal to i, the notation 7b is used occasionally.

Notes

1 The LISREL notation system is neither universal nor necessary. There are many minor varia-
tions and several major alternative notation systems. Most notably, the Bentler-!7eeks system
(Bentler & Veeks, 1980), which is associated with EQS software, is another matrix-based nota-
tion alternative.

2 I borrowed this convention from my colleague, Rich Jones.
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