Item Response Theory and Rasch Models

Review of Basic Concepts
Simple Regression Analysis
Simple Logistic Regression
One-parameter logistic models
Review of Basic Concepts

Item response theory (IRT; Lord, 1953; 1980; Rasch, 1960) is a widely used approach to psychometric analysis

Primarily used for ability or knowledge tests with binary items (correct/incorrect), but can be used with ordinal responses and in other contexts

Used for item analysis, scale development/evaluation, and investigation of test bias

Specialized software, such as BILOG-MG, MULTILOG, PARSCALE, IRTPRO, and ltm in R
Review of Basic Concepts

Sometimes referred to as “latent trait theory,” the IRT approach quantifies the relationship between the ability and the response to an item. The latent trait is represented in equations by the Greek letter theta, θ, which is referred to as the ability, trait, or proficiency.
Review of Basic Concepts

We have already covered some of the basics of IRT:

- Item difficulty
- Discrimination index
- Item characteristic curves (ICC)
- Standard error of measurement
Simple Regression Analysis

The core of IRT models is the prediction of the response by the ability as depicted by the item characteristic curve.

Simple Regression Analysis

The statistical model for prediction is known as *regression analysis*, whose term comes from regression toward the mean (Galton, 1886)

Regression analysis is based on the equation of a line, which is used to summarize the relationship between two variables
Simple Regression Analysis

Above is a scatterplot for the number of publications for professors in a psychology department predicted by the number of years since receiving their PhDs.
Simple Regression Analysis

The equation for a line, \(mx + b \), is used to summarize the trend of the points.

In the equation for a line, \(m \) is the slope, which you should remember as “rise over run”—the amount that \(Y \) increases as \(X \) is incremented by one point.

\(b \) is the intercept, or the point on the y-axis where the line intersects when \(X \) is equal to 0.
Simple Regression Analysis

The line is comprised of the values the dependent variable (NUMPUBS) predicted by X (YRSPHD)—predicted or expected values called

The equation for the regression line is then

$$\hat{Y} = a + b(X)$$
Simple Regression Analysis

But as we can see in the scatterplot, the actual points are not always perfectly predicted.
Simple Regression Analysis

The statistical equation then adds a term that accounts for the error of prediction—the distance of a point from the line, known as the residual

\[Y = a + b(X) + r \]

The actual or observed score, \(Y \), is equal to the equation for the line plus some error, \(r \)
Simple Logistic Regression

In most IRT analyses, we want to predict whether the item is correct using the persons underlying ability. The better the prediction, the stronger the relationships between ability and the probability of a correct response, $P(Y=1)$.

The problem is that predicting the probability of a binary variable is that the line not usually a straight
Simple Regression Analysis

![Graph showing the Probability of Correct Answer vs. Mechanical Aptitude Score (z-scores)]

Figure 11.1 ICC Curve for a Test Item

Simple Logistic Regression

The predicted line has to be bent using an exponential transformation, which we call logistic regression

\[
\ln\left(\frac{p}{1-p}\right) = a + bx
\]

The predicted values, \(\hat{Y} \), are replaced by the natural logarithm transformation, \(\ln \), of the probability that \(Y = 1 \), represented by \(p \)
Simple Regression Analysis

To get back to the predicted values, we need to transform the other side of the equation using the opposite of the natural log, the exponential transformation

\[
\hat{Y} = \frac{e^{a+bx}}{1 + e^{a+bx}}
\]

e is Euler’s constant, which is approximately 2.71828182845904 (or rounding a bit more, 2.72)
Simple Regression Analysis

The exponential transformation, sometimes exp, is simply the constant e is raised to a power:

For example, $e^3 \approx (2.72)^3 = 20.09$

We can return to the exponent value 3 by taking the natural log of the result, $\ln(20.09) = 3$
One-parameter Logistic Models

In the basic IRT model, the probability of a correct response, $P(X_{is} = 1)$, is predicted by the ability, θ_s using logistic regression.

The subscript i is for item and the subscript s is for subject (respondent).

Now take another look at the mechanical ability example from the text.
One-parameter Logistic Models

\[P(X_{iS} = 1) \]

\[\theta_S \]
The one-parameter logistic model (1PL) or the equivalent Rasch model (Rasch, 1960) is a logistic regression model in a slightly altered form.

The probability of the correct response, $P(X_{is} = 1)$, is predicted by the ability, θ_s and the items difficulty, given as β_i.

$$P(X_{is} = 1) = \frac{e^{\theta_s - \beta_i}}{1 + e^{\theta_s - \beta_i}}$$
Two-parameter Logistic Models

The two-parameter logistic model (2PL) extends the 1PL model by adding the discrimination parameter, α_i

$$P(X_{is} = 1) = \frac{e^{\alpha_i(\theta_s - \beta_i)}}{1 + e^{\alpha_i(\theta_s - \beta_i)}}$$