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Sample Size and Power for Regression 
Statistical power for regression analysis is the probability of a significant finding (i.e., a relationship 
different from 0 typically) when in the population there is a significant relationship. By convention, .80, 
which represents an expectation that 80% of random samples from the same population would find 
significance if there is a relationship in the population (i.e., H1 is true), is often used as a minimum 
acceptable level of power when estimating the sample size needed in a planned study. In general, power 
is dependent on the significance criteria used (nearly always α = .05), sample size, and effect size. 
Sufficient power is not only critical for ensuring that we do not miss important significant effects, but it is 
also important because power may play a major role in failures to replicate findings and even in a greater 
chance that a given finding may be a false positive (Fraley & Vazire, 2014).  
 
In regression analysis, we may be interested in the significance of all of the predictors together, which is 
the F test of significance of R2, or the significance of the partial regression coefficient, B. There are a 
number of "rules of thumb" that have been proposed for what should be an adequate sample size for 
regression analysis (Maxwell, 2000). Sometimes these are based on a ratio of the number of cases to 
predictors or other conventions. These suggestions are nearly always overly general.  
 
Power to Detect a Significant R2 
The effect size estimate (which is sometimes abbreviated ES) for R2 is Cohen's f 2 which is a simple ratio 
of the proportion of variance accounted for relative to the proportion of variance unaccounted for.  
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Cohen (1988) suggested an f 2 value of .02, .15, and .35 be used for small, medium, and large effect 
sizes, respectively. Because we know that R2 depends on n (sample size) and the k (number of 
predictors), it is easy to see what factors contribute to effect size in addition to the correlations of the 
predictors with the outcome. The f 2 can be computed using the same equation for incremental R2 (or R2-
change). Taking a look at the F-statistic equation can be instructive about how n, k and R2 affect power.  
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First, from the numerator of the form of the equation on the farthest right above, it is clear that increasing 
sample size, n, would increase F and therefore power. Second, the denominator from that same equation 
also indicates that adding predictors, k, would decrease F. The numerator of that same form of the 
equation, which contains df = n – k – 1, also suggests there is an additional small penalty for having more 
predictors, k.  
 
The quantity L, the non-centrality parameter,1 is a simple computation from f 2 and the degrees of 
freedom. 
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With a little algebra we can find an equation that would help us estimate the sample size, n*, given some 
value of f 2 and the number of predictors.  
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1 L is referred to as λ ("lambda") by Cohen (1988) and many other sources. See my "Power" handout from the univariate quant class 
http://web.pdx.edu/~newsomj/uvclass/.  

http://web.pdx.edu/%7Enewsomj/uvclass/
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Or, we can use L to estimate power with Appendix Table E.2 from the text (Cohen, Cohen, West, & 
Aiken, 2003). Effect sizes can be taken from relevant literature or it is often convenient to use some 
range of effect sizes (such as Cohen's conventional values for small, medium, and large effects).  
 
Power analyses and plots can also be obtained using a computer program such as G*Power,2 a 
freeware program. I used G*Power to create the plot below showing the relationship between sample 
size and power for a range of small to large sample sizes for R2 (assuming α = .05, two tailed).  
 

 
 
The plot suggests we need fewer than about 25 cases to detect a large effect, about 60-70 or so to 
detect a medium effect size (my f 2 of .19 is a little higher than Cohen's .15 medium, because the 
program constrains the values), and something over 300 cases for a small effect. 
 
Power to Detect a Significant Regression Coefficient 
For simple regression, the test of the regression coefficient is the same as the test of r, so one way to 
estimate power in this case is to use a power table for r, such as Appendix Table F.2 of your text (Cohen 
et al., 2003) where you will find a power table for r values. This can also serve as a rough guide for 
statistical power and sample size requirements for β for any model.  
 
Because β 2 is not really a very exact estimate of unique variance accounted for by a variable, it is better 
to use R2-change for a single variable added to the model or equivalently sr2. The equations for f 2 and L 
are readily adaptable for that. Cohen (1988) suggested (where R2 on the denominator refers to the total 
R2). 
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It is worth looking at the standard error equation for a partial regression coefficient (one form of it) to get 
a sense of how various factors affect power. Remember that because t = B/SE, a smaller standard error 
leads to greater probability of finding significance.  
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The 2

iR on the denominator in the third quantity on the right is the multiple regression of the predictor as 
predicted by all of the other predictors, and so represents the amount of correlation (collinearity) among 
the predictors (as used in VIF and tolerance). And, as the equation suggests, a larger sdX, a smaller sdY, 

 
2 https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower 
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a larger total R2, and smaller intercorrelations among the predictors ( 2

iR ) all will also lead to smaller 
standard errors and greater power.  
 
I used G*Power to plot power by sample size for a range of effect sizes (again α = .05, two-tailed) for a 
partial regression coefficient. To gauge what we might expect for β values, the small, medium, and large 
f 2

 values that I used below (.02, .19, .36), corresponding to β values of about .14, .36, and .51.  
 

 
 
From the figure, it looks like n of about >300, 40, about 25 are needed to power of .80 with small, 
medium, and large effect sizes.  
 
Recent versions of G*Power have added power for tests of regression coefficients. For simple 
regressions, standardized coefficient values can be used for effect sizes (perhaps using the correlation 
values of .1, .3, and .5 as small, medium, and large) as long as you make sure the standard deviations of 
x and y are set to 1. Power for regression coefficients in multiple regressions also can be estimated 
under “Multiple Regression; Fixed Model; Single Regression Coefficient.”  This option can take into 
account the number of predictors but does not incorporate information about the correlation among 
predictors or the total R2 value.  
 
Power of Tests of Interactions and Indirect Effects 
Both interaction tests and tests of indirect effects are notoriously lacking in power. For interactions, the 
reduced power comes from the fact that a product variable has a reliability equal to the product of the 
reliabilities of the two variables (Aiken & West, 1991) and the tendency for the product variable to have a 
nonnormal distribution (McClelland & Judd, 1993; O'Connor, 2006; Shieh, 2009). The effect size for the 
interaction also depends on the shape of the interaction, with magnitude (ordinal) patterns having smaller 
effect sizes than cross-over (disordinal) patterns (Champoux & Peters, 1987; Blake & Gangstead, 2020). 
All things combined, the power to test the interaction can be considerably lower compared to the power 
to detect significance for "main effects."  
 
Indirect effect tests to investigate mediation also suffer from lower power (e.g., MacKinnon et al., 2002). 
One of the reasons is that the sampling distribution for the indirect effect is nonnormal. This has been 
addressed to some extent with improved tests, using bootstrapping, for example. Power to detect 
significance for the indirect depends on the value of the a (X predicting M) and b (M predicting Y) effects 
and has some complex results. For small b effects, moderately-sized a coefficients, more than smaller- 
and larger-sized a coefficients, may lead to a stagnation of power, in which power is worse than expected 
given the size of the coefficient (Fritz, Taylor, & MacKinnon, 2012). Indirect coefficients also pose some 
problems for how to conceptualize an appropriate effect size. Calculating the proportion of the total effect 
due to the indirect effect (or “proportion mediated”) has been proposed (Preacher & Kelley, 2011), but it 
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has some potential pitfalls (MacKinnon, Kisbu-Sakarya, & Gottschall, 2013). Alternatives include 
standardized or partially standardized values (Fairchild, MacKinnon, Taborga, & Taylor, 2009). Based on 
standardized indirect coefficient values, Kenny suggests small, medium, and large effects size for 
indirect effects should be .01, .09, and .25, respectively (http://davidakenny.net/cm/mediate.htm#DI). 
Kenny has created an online calculator for estimating power with indirect effect tests, 
https://davidakenny.shinyapps.io/MedPower/. 
 
 
Logistic Regression 
Power analysis and sample size recommendations for logistic regression are more complicated by the 
fact that there is not really a clearly accepted effect size measure that works with all applications, given 
that there is no well-defined R2 and odds ratios are scale dependent in the case of a continuous 
predictor. No doubt that researchers should plan for larger sample sizes—some have suggested two or 
three times larger for logistic regression than for OLS (Taylor, West, & Aiken, 2006). In addition, there 
are a number of precautions about significance testing for small n, rare events, and sparse data.  
 
For sufficient power, a number of "rules of thumb" have been suggested, but are likely to be 
oversimplifications—power analysis is better able to take more specific circumstances into account. 
Many authors have recommended a 10:1 ratio of cases to predictors. Based on simulations, Peduzzi and 
colleagues (Peduzzi, Concato, Kemper, Holford, & Feinstein, 1996) refine the 10:1 recommendation, 
stating that ten times the number of predictors, k, should take into account the proportion, p, of 
successes, n = 10k/p. The proportion of successes should be formulated as a proportion between 0 and 
.5, so that when the proportion is close to .5, fewer cases are needed (always using a minimum of 100). 
When modeling rare events, one should consider the absolute frequency of the event rather than the 
proportion, according to Allison (2012). If the overall probability of disease is .01 (1 in a 1000) for 
example, then one may need a total of 20,000 cases for sufficient power, because the number of events 
is 200. Recall that the Wald test can behave erratically with smaller sample sizes (e.g., Hauck & Donner, 
1977), so, for smaller samples, it is wise to also examine likelihood ratio (or perhaps score) tests for 
individual predictors. Finally, Hsieh (1989) published tables of required sample sizes for various odds 
ratios × event proportion which are widely cited. These tables can be difficult to use because all of the 
values are based on one-tailed tests, a more liberal standard (equal to α = .10 two-tailed). To give a very 
general idea of what sample size might be required for the usual power = .8 with a two-tailed test using 
the Hsieh tables, consider two fairly arbitrary examples from the table using a more conservative power 
value than usual (.9 instead of the usual .8): for an odds ratio of 1.5 when the outcome π = .5, 225 cases 
are needed, whereas for an odds ratio of 1.5 and π = .1, 628 cases are needed. Power and adequate 
sample sizes for logistic regression is a fairly complex issue, where sparseness and the size of odds 
ratios have some biasing effects on fit and odds ratios (see my handout "Sample Size and Estimation 
Problems with Logistic Regression" from my categorical data analysis class for a brief synopsis and 
further references, http://web.pdx.edu/~newsomj/cdaclass/)  
 
I used G*Power to illustrate the effect of sample size on power for several odds ratio values to get some 
idea of power (with α = .05). These results assume a binary predictor in a simple regression. On the left 
the H0 probability for Y = 1 is p = .5 when power is likely to be greatest and on the right the H0 probability 
for Y = 1 is p = .1 when power is considerably lower.  
 

http://davidakenny.net/cm/mediate.htm#DI
https://davidakenny.shinyapps.io/MedPower/
http://web.pdx.edu/%7Enewsomj/cdaclass/
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