Salary and Publications Example (Cohen, Cohen, West, & Aiken Table 3.2.1)

SPSS Syntax

```
get file='c:\jason\spsswin\da2\ccwa3_2_1.sav'.
correlations vars=pubs time salary.
regression vars=salary time pubs
    /descriptives=mean stdev
    /statistics=anova coeff ses r ci
    /dependent=salary
    /method=enter pubs time.
```

Correlations

		number of publications	years since PhD	annual salary in dollars
number of publications	Pearson Correlation	1	.657	.588
	Sig. (2-tailed)		.008	.021
	Ν	15	15	15
years since PhD	Pearson Correlation	.657	1	.710
	Sig. (2-tailed)	.008		.003
	Ν	15	15	15
annual salary in dollars	Pearson Correlation	.588	.710	1
	Sig. (2-tailed)	.021	.003	
	Ν	15	15	15

Note: this table was produced by the first, separate correlations procedure because it has two-tailed tests.

Descriptive Statistics

	Mean	Std. Deviation	N
annual salary in dollars	53045.6000	7889.76815	15
years since PhD	7.667	4.5774	15
number of publications	19.933	13.8227	15

Regression

Variables Entered/Removed

Model	Variables Entered	Variables Removed	Method
1	PUBS number of publication s, TIME years since PhD		Enter

a. All requested variables entered.

b. Dependent Variable: SALARY annual salary in dollars

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.728ª	.530	.452	5839.23054

a. Predictors: (Constant), number of publications, years since PhD

Mo	del	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	4.623E8	2	2.312E8	6.780	.011ª
	Residual	4.092E8	12	3.410E7		
	Total	8.715E8	14			

ANOVA^b

a. Predictors: (Constant), number of publications, years since PhD

b. Dependent Variable: annual salary in dollars

Coefficients^a

		Unstandardized Coefficients Standardized Coefficients				95.0% Confider	ce Interval for B		
Mode	əl	В	Std. Error	Beta	Std. Error	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	43082.394	3099.493			13.900	.000	36329.178	49835.610
	years since PhD	982.867	452.057	.570	.262	2.174	.050	-2.081	1967.815
	number of publications	121.801	149.699	.213	.262	.814	.432	-204.364	447.966

Upper 95%

49835.610

447.966 1967.815

a. Dependent Variable: annual salary in dollars

R Code

> corrvars = subset(d,select=c(PUBS,TIME,SALARY))

```
>
```

library(correlation)
correlation(corrvars, p_adjust="none") >

```
# Correlation Matrix (pearson-method)
```

Parameter1	Parameter2	r	95% CI	t(13)	р
PUBS PUBS TIME	SALARY	0.59	[0.22, 0.87] [0.11, 0.85] [0.31, 0.90]	2.62 0	.021*

p-value adjustment method: none Observations: 15

lessR

```
> #clear active frame from previous analyses
> rm(d)
>
>
 library(haven)
> d = read_sav("c:/jason/spsswin/da2/ccwa3_2_1.sav")
> library(lessR)
> Regression(SALARY ~ PUBS + TIME, brief=TRUE)
Number of cases (rows) of data: 15
Number of cases retained for analysis: 15
  BASIC ANALYSIS
-- Estimated Model for SALARY
                                                          Lower 95%
              Estimate
                           Std Err
                                     t-value
                                               p-value
                          3099.493
                                                           36329.178
(Intercept) 43082.394
                                      13.900
                                                 0.000
       PUBS
               121.801
                           149.699
                                        0.814
                                                  0.432
                                                            -204.364
       TIME
               982.867
                            452.057
                                        2.174
                                                  0.050
                                                              -2.081
-- Model Fit
Standard deviation of SALARY: 7,889.768
```

standard deviation of residuals: 5,839.231 for 12 degrees of freedom 95% range of residual variation: $25,445.181 = 2 \times (2.179 \times 5,839.231)$ R-squared: 0.530 Adjusted R-squared: 0.452 PRESS R-squared: 0.325 Null hypothesis of all 0 population slope coefficients: F-statistic: 6.780 df: 2 and 12 p-value: 0.0 p-value: 0.011

-- Analysis of Variance

df Sum Sa Mean Sq F-value p-value Newsom Psy 522/622 Multiple Regression and Multivariate Quantitative Methods, Winter 2025

PUBS	1	301137778.671	301137778.671	8.832	0.012
TIME	1	161181041.670	161181041.670	4.727	0.050
Model Residuals SALARY		462318820.340 409159359.260 871478179.600	231159410.170 34096613.272 62248441.400	6.780	0.011

> #note that lessR standardized coefficients--ignore SE and significance tests
> Regression(SALARY ~ PUBS + TIME, brief=TRUE, new_scale="z",scale_response=TRUE)

-- Estimated Model for zsalary

	Estimate	Std Err	t-value	p-value	Lower 95%	Upper 95%
(Intercept)	0.0002	0.1911	0.001	0.999	-0.4162	0.4166
zpubs	0.2135	0.2623	0.814	0.432	-0.3581	0.7851
ztime	0.5701	0.2623	2.174	0.050	-0.0014	1.1416

Base R

```
> #multiple regression using base R function lm
> mod = lm(SALARY ~ PUBS + TIME, data=d)
> summary(mod)
Output omitted
```

Example Write-up

To examine whether the number of publications was independently associated with annual academic salary after controlling for the number of years since receiving the doctorate, a simultaneous multiple regression analysis was conducted. Results indicated that the number of publications did not independently predict salary, B = 121.80, $SE_B = 149.70$, 95% CI [-204.36,447.97], $\beta = .21$, p = .43. Years since receiving a doctorate was marginally significantly related to salary, B = 982.87, $SE_B = 452.06$, 95% CI [-2.08,1967.81], $\beta = .57$, p = .05, indicating that salary increased by approximately \$982 for each additional year since receiving the doctorate. Overall, the number of publications and years since finishing a doctorate accounted for over 50% of the variance in salary, $R^2 = .53$, F(2,12) = 6.78, p = .01.

Note: Current APA format is to use *b* for unstandardized and b^* for standardized. *B* and β are still widely used, however, even in APA journals.