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Remedies for Assumption Violations and Multicollinearity 
Outliers 
• If the outlier is due to a data entry error, just correct the value. This is a good reason why raw data should be 

retained for many years after it is collected as some professional associations recommend. For direct 
computer entry or online data collection, entry errors cannot always be determined for certain. 

• If the outlier is due to an invalid case because the protocol was not followed or the inclusion criteria was 
incorrectly applied for that case, the researcher may be able to just eliminate that case. I recommend at least 
reporting the number of cases excluded and the reason. Consider analyzing the data and/or reporting 
analyses with and without the deleted case(s). 

• Transformation of the data might be considered (see overhead on transformations). Square root 
transformations, for instance, bring outlying cases closer to the others. Transformations, however, can make 
results difficult to interpret sometimes.  

• Analyze the data with and without the outlier(s). If the implications of the results do not differ, one could 
simply state that the analyses were conducted with and without the outlier(s) and that the results do not differ 
substantially. If they do differ, both results could be presented and a discussion about the potential causes of 
the outlier(s) could be discussed (e.g., different subgroup of cases, potential moderator effect). 

• An alternative estimation method could be used, such as least absolute residuals, weighted least squares, 
bootstrapping, or jackknifing. See discussion of these below. 

 
Serial Dependency 
• Use time as a covariate (e.g., by transforming the date into the number of days since the start date). 
• Transform the X and Y variables using the following formulas: *

1 1lag tX X r X −= −  and *
1 1lag tY Y r Y −= − . In the 

formula for X*, Xt-1 is the value of X at the previous timepoint. Similarly, in the formula for Y*, 1tY −  is the value 
of Y at the previous time point. 1lagr  is the estimation of the correlation between Y and 1tY − , called the 
autocorrelation. This approach may require some reconfiguring of the data and a particular study design. 

• Use a different analysis technique such as time series analysis, hierarchical linear modeling (HLM; also 
known as multilevel modeling), or structural equation modeling. The ability to use these approaches may 
depend on particular features of the study design. 

 
Clustering 
• Use hierarchical linear (multilevel) modeling (see Raudenbush & Bryk, 2002). 
• Generalized estimating equations (GEE) may offer an analysis alternative in some circumstances. 
• Use complex sampling design adjustments (e.g., see Lee & Forthofer, 2006). 
 
Heteroscedasticity (Nonconstant Variance) 
• Some heteroscedasticity problems may be due to the presence of an outlier or group of outliers. In this case, 

one could follow the remedies presented above. 
• Alternative analysis techniques, such as least absolute residuals, weighted least squares, bootstrapping, or 

jackknifing, are also designed to be used for heteroscedasticity problems. (see below) 
• Use robust standard errors, also referred to as Huber-White (or Huber-White-Eiker) standard errors, or 

"sandwich estimator." Regression estimates are the same as OLS, and robust standard errors will be equal 
to OLS standard errors under homoscedasticity. Estimates may be best with large samples. 

• Some data transformations of X or Y may be useful. 
 
Multicollinearity 
• Check for errors or problematic computations of predictor variables. 
• Eliminate one of the redundant variables.  
• Average the redundant variables and reconceptualize the meaning of the predictor. 
 
Alternative Regression Estimation 
Historically, the older alternative estimation procedures have not always faired very well in simulation studies, 
but newer methods, such as those using robust standard errors or bootstrapping, have shown much more 
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promise. Unfortunately, there is an overwhelming number of particular approaches for each one of the 
alternative methods described below, and there is a dizzying array of specific situations (distribution shapes, 
number of outliers, extremity of outliers, sample sizes, number of predictors, overall fit of the model, and effect 
sizes) that can have an important effect on whether these methods perform better and in what ways compared 
with OLS regression. There are still quite a few authors who contend that OLS works well in most general 
circumstances (e.g., Cohen, Cohen, West, & Aiken, 2003; Lewis-Beck & Lewis-Beck, 2015; Lumley, 2002). 
Others have been stronger proponents of alternative or robust regression methods (e.g., Fox, 2015; Fox & 
Weisberg, 2011). 
• One general type of approach, often simply referred to as "robust regression", which adjusts standard errors 

(e.g., White, 1980; sometimes referred to as "sandwich" estimator, or, Eicker-Huber-White), is gaining 
increasing popularity in some circles.1 Regression and ANOVA are fairly robust to normality assumption 
violations, but in more serious cases, this approach may be superior. The robust estimation approach 
appears to be useful for heteroscedasticity problems as well, provided the sample size is sufficiently large 
(Hayes & Cai, 2007). 

• Least absolute residuals, least absolute deviation, or least absolute values. Minimizes |e| instead of e2. This 
reduces impact of large residuals. There is a wide variety of specific methods and tests used (Dielman, 
2005), and the methods may be preferable when there are distribution issues, outliers, or heteroscedasticity 
depending on the method and the circumstances.  

• Least trimmed squares (or more generally, bounded estimates). Standard errors are recomputed by 
eliminating the most extreme positive or negative residuals. There are a variety of related methods (Nguyen 
& Welsch, 2010), some of which may have problems when there is a cluster of outliers but can work well for 
individual outliers.  

• Weighted least squares (WLS). WLS does not require the assumption that there will be equal variances. With 
WLS, cases are reweighted based on the size of X relative to the variance of X (often based on leverage), so 
that more extreme cases are given less weight in the analysis. In its basic form, WLS can be problematic 
unless the choice of weights is accurate. There are several newer varieties in combination with other 
techniques (e.g., M-estimates, bounded influence estimates, bisquare, minimax) that offer some important 
improvements over regular WLS (Strutz, 2016). For any of these WLS-related methods, I recommend 
reporting both OLS and the WLS estimates, as it is difficult to know which one is the optimal approach for 
any particular set of circumstances.   

• Bootstrapping. Many random samples are drawn from the full sample with replacement. Expected values and 
the variance of this mini sampling distribution can be used for addressing parameter bias or improving 
confidence interval (or standard error) estimation. Bootstrapping can reduce the impact of particular outlier 
cases and improve estimates when heteroscedasticity is present. It is a promising alternative method 
receiving a lot of attention (Chernick, González-Manteiga, Crujeiras, & Barrios, 2014; Davison & Hinkley, 
2003) as a data analytic remedy in this realm and others (e.g., non-normality correction, mediation analysis, 
and missing data analysis). 

• Jackknifing. Similar to bootstrapping but less commonly employed. Resampling uses the sample size minus 
one case, using the multiple estimates to correct bias and estimate standard errors. 
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1 See GENLIN procedure in SPSS and rlm function from the MASS package. 
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