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Regression Models for Ordinal Dependent Variables 

Thus far the logistic and probit regression have involved a binary outcome variable, but an important 
advantage of these models is that they can be generalized to a situation in which there are more than 
two ordered categories, such as response options of "never," "sometimes," and "a lot." Typically, 
variables analyzed as ordinal have 3 or 4 rank-ordered categories that do not necessarily have equal 
distance between the values. Once there are 5 or more categories and particularly with larger sample 
sizes and fairly normally distributed variables, there will be little difference between results obtained with 
ordinal regression and OLS regression approaches except for heavily skewed distributions (e.g., 
Kromrey & Rendina-Gobioff, 2002; Taylor, West, & Aiken, 2006).1 

Ordinal Logistic and Probit Regression 
Ordinal logistic (or sometimes called ordered logit models) are logistic regressions that model the change 
among the several ordered values of the dependent variable as a function of each unit increase in the 
predictor. (With a binary variable, the ordinal logistic model is the same as logistic regression.) In SPSS 
and R, ordinal logistic analysis can be obtained through several different procedures. SPSS does not 
provide odds ratios using the ordinal regression procedure, but odds ratios can be obtained by 
exponentiation of the coefficients (eB).2 In the case of an ordinal outcome with three or more categories, 
the odds ratio for the logistic model represents the odds of the higher category as compared to all lower 
categories combined. In other words, it is a cumulative odds ratio representing the increased likelihood to 
the next highest category relative to the lower categories for each unit increase in the predictor. It is 
assumed that the same effect occurs for each level comparison of the ordered responses, so that the 
increase or decrease in odds for each unit increase in X is the same for the increment from ln[P(Y < = 1)] 
to ln[P(Y < = 2)] as from ln[P(Y < = 2)] to ln[P(Y < = 3)]. In other words, “slopes” for predicting the logit are 
parallel over all of the ordered categories of the response (sometimes called a "proportional odds 
model").  
 
The ordinal logistic regression model can be written in two parts as 
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The probabilities 0ˆ ip  , 1ˆ ip  and 2ˆ ip  are for the observed values Y = 0, Y = 1, and Y = 2.3 The slope B 
represents the average change in the logit for each level increase in the dependent variable, where there 
is only one slope coefficient. A novel aspect of the ordered logit model, however, is that there are 
multiple (J – 1) intercepts so that there will always be one fewer intercepts than response categories. 
Each intercept represent an estimate of the threshold in the generalized linear modeling Y* framework. 
Above, the thresholds are referred to as τ1 and τ2 above and in general we can call τj, an estimate of the 
threshold from the Y* distribution (logistic cdf in logistic case). The Y* value falls between any two 
intercepts, *

1j jYτ τ− ≤ < . If the unknown Y* value is equal to or greater than the threshold value, then Y is 
observed to be the next higher value (e.g., Y = 2 instead of Y =1).  

 
1 See also the "Levels of Measurement and Choosing the Correct Statistical Test" handout for my univariate statistics course for more detail and 
references. 
2 Note that with the ordinal regression procedure in SPSS and R using the logit link function, the threshold is -1 times the constant obtained in 
the logistic regression, so you will see opposite signed constant values in SPSS and R.  
3 My subscripts, 0, 1, and 2 correspond with the subscripts D for "disagree", U for "undecided" and A for "agree" in the Cohen, Cohen, West, and 
Aiken (2003) example (p. 523). The text also uses t for the sample estimate instead of τ.  
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Predicted probabilities for each category response on Y can be obtained by using the exponential 
formula ( ( )1/ 1 jBXe τ++ , where the appropriate threshold value (e.g., τ1 for 1p̂ ), a chosen X value, and the 
slope coefficient are inserted.  
 
A second approach to regression with ordinal outcomes is probit regression, which assumes normally 
distributed errors (see the “Link Functions and the Generalized Linear Models” handout). Most of the 
other aspects of the probit model parallel the logistic ordinal model, including multiple thresholds and the 
assumption of equal slopes across each increment of Y. Because probit models involve a normal 
distribution for Y*, the thresholds are standardized score values, with most values occurring between 
approximately -3 and +3. As with a binary outcome, the logit and probit analysis will nearly always lead to 
the same conclusions (Long, 1997). Both modeling approaches are acceptable, and researchers tend to 
choose the approach with which they are the most familiar. Some researchers prefer logistic to probit 
regression because odds ratios can be computed, but some researchers prefer probit to logit because 
standardized coefficients can be obtained.  
 
For outcomes that can be considered ordinal, it is generally better to use all of the ordinal values rather 
than collapsing into fewer categories or dichotomizing variables, even with a sparse number of 
responses in some categories. Collapsing categories has been shown to reduce statistical power 
(Ananth & Kleinbaum 1997; Manor, Mathews, & Power, 2000) and increase Type I error rates (Murad, 
Fleischman, Sadetzki, Geyer, & Freedman, 2003). 
 
Loglinear Models  
Loglinear models, which can also be used for ordinal variables, are not predictive models. Rather they 
are like chi-square models in that there is no need to specify an independent and dependent variable. In 
simple cases, the loglinear model is equivalent to the logit model and is more generally related to 
Poisson models (Agresti, 2013). Loglinear models can be used for cases in which there are two or more 
ordinal categories for the independent or dependent variable. Wickens (1989) provides a gentle 
introduction to loglinear models and Agresti (2013) is a somewhat more technical source on the topic. 
See also my handout "Ordinal Analyses" under my Univariate Quantitative Methods class.  
 
Multinomial Logistic for Multicategory Nominal Outcomes  
Not all multicategory outcomes can be ordinally ranked, but a variant on logistic regression can be used 
to predict such outcomes. For example, if one wanted to predict the type of smart phone purchased, 
such as Apple, Google, or Samsung, the outcome is not easily ordered in any way. A multinomial (or 
polytomous) logistic regression model can estimate the odds of choosing one category of phone over 

τ1

y = 2y = 0

y* 

fy* 

y* < τ1 τ 2< y*

Observed

Unobserved

τ2

y = 1

τ 1< y*< τ 2



Newsom   
Psy 522/622 Multiple Regression and Multivariate Quantitative Methods, Winter 2025  3 
 
another (e.g., Apple coded as 0). Multinomial logistic models provide multiple sets of coefficients for 
comparisons of each of the other groups to this baseline or comparison group. If there are g groups, then 
there will be g – 1 logistic models estimated. Please see the subsequent handout "Multinomial Logistic 
Regression Models" for more information. 
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