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Missing Data and Regression 

Missing data is a common problem in applied research. Missing values may occur because of non-
response, errors in the data collection, or dropout. With regression analysis, the default in all programs is 
to eliminate any cases with missing data on any of the variables (i.e., listwise deletion). As the amount of 
data that is missing increases, there can be a substantial reduction of sample size and a resulting loss of 
power. As important, there is a potential for biases in the regression estimates and their standard errors 
(and therefore the significance tests), depending on which values are missing. If the values observed 
were simply a random sample of the possible values observed, then the only biases would be due to the 
loss of sample size, as the observed subsample would be just a random sample form the larger possible 
values if there had been no missing values. Both the loss of sample size and the biases can be 
addressed in some cases (for comprehensive treatments, see Enders, 2022; Little & Rubin, 2002; 
Schafer, 2012).  
 
Mechanisms  
MAR and MCAR. A distinction about the nature of missing data was made by Rubin (1976; Little, 1995), 
who classified missing values as missing at random (MAR), missing completely at random (MCAR), or 
neither. Both MAR and MCAR require that the true values of the variable with missing values be 
unrelated to whether or not a person has missing values on that variable. For example, if those with 
lower incomes are more likely to have missing values on an income question, the data cannot be MAR or 
MCAR. The difference between MAR and MCAR is whether or not other variables in the data set are 
associated with whether or not someone has missing values on a particular variable (say Y). For 
example, are older people more likely to refuse to respond to an income question? If these other 
variables are related to missingness on Y but the values of Y are not, then the missing values are MAR. If 
no other variables are related to missingness, then missing values are MCAR. The term “missing at 
random” is confusing because values are not really missing at random—for MAR, missingness seems to 
depend on some of the variables in the data set. MCAR is more what we think of when we think values 
are missing at random. For MCAR, it is as if we took a completely random selection of cases, and 
deleted their values for a variable. 
 

from Newsom (2024), p. 421 

Determining Whether Missing Values Are MAR  
Researchers can investigate whether any variables in the data set are related to missingness on a 
variable by computing a new variable that indicates (0, 1) whether data are missing or present and then 
using correlations or group comparisons. Little (1988) developed a simultaneous test along these lines.1 
If none of the variables in the data set are related to missingness, then the data are observed to be 
missing completely at random, although this does not guarantee that the values for the missing variable 
are not related to missingness for that variable (Allison, 2001). Practically speaking it is not possible ever 
to determine whether the true values of a variable are related to the probability of missingness on that 
variable, because we do not have the missing information. As Schafer and Graham (2002) state: "When 
missingness is beyond the researcher's control, its distribution is unknown and MAR is only an 

 
1 Little's test for MCAR, [Little, R.J.A. (1988). A test of missing completely at random for multivariate data with missing values. Journal of the 
American Statistical Association , 83, 1198-1202] can be conducted in SPSS with the missing data module (must be separately purchased), in 
SAS a macro https://communities.sas.com/kntur85557/attachments/kntur85557/sas_iml/4752/1/Little%20Code.docx, with R, https://search.r-
project.org/CRAN/refmans/naniar/html/mcar_test.html and through other specialty packages such as Mplus. 
 

https://communities.sas.com/kntur85557/attachments/kntur85557/sas_iml/4752/1/Little%20Code.docx
https://search.r-project.org/CRAN/refmans/naniar/html/mcar_test.html
https://search.r-project.org/CRAN/refmans/naniar/html/mcar_test.html
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assumption. In general, there is no way to test whether MAR holds in a data set, except by obtaining 
follow-up data from nonrespondents or by imposing an unverifiable model." (p. 152). With attrition over 
time, it may be possible to test whether missingness is associated with the value of the variable that has 
present values at an earlier time point (i.e., usually all cases have mostly complete data at the first time 
point). For example, in a pretest-posttest design, we could investigate whether the variable at Time 1 
(i.e., with complete data) is associated with the missingness for that variable at Time 2 (Little, 1995), 
which provides some information but is nearly always an imperfect proxy. In other circumstances, one 
may have to provide a theoretical argument that missingness is not associated with the variable or rely 
on information in the literature. Simulation work illustrates that modeling potential causes or correlates of 
the variables with missing values has important advantages when values are only MAR, particularly 
when the association of those “auxiliary” variables with the variable with missing values is high (e.g., > 
.4) and when the amount of missing data is large (e.g., > 25%; Collins, Schafer, & Cam, 2001; Graham, 
2003). So, to the extent that we can incorporate some of the variables or proxies for the variables that 
may be causally related to the probability of missingness, we may be closer to meeting the MAR 
assumption. For this reason, there is an argument for always using modern missing data techniques, 
such as multiple imputation or full maximum likelihood estimation, because there are few if any cases in 
which listwise deletion would provide better statistical tests. 
 
Listwise Deletion. Listwise deletion means that complete data on each case is required, and any 
individual who has missing information on any variable is eliminated. For example, 

 
i j Yij X1ij X2ij 
1 1 10 8 8 
2 1 . 9 . 
3 1 1 5 5 
4 2 3 . 5 
5 2 7 8 8 
6 2 10 8 . 

 
With listwise deletion, complete data are required on all variables in the analysis—any cases with 
missing values on one or more of the variables was eliminated from the analysis. In the example above, 
only cases 1, 3, and 5 are used in the analysis with listwise deletion. In most traditional repeated 
measures analyses such as ANOVA or regression, each time point (for each case) must have complete 
data. Listwise deletion reduces the sample size, adversely impacting significance tests, and will lead to 
biases in estimates unless data are MCAR (e.g., Enders & Bandalos, 2004; Kim & Curry, 1977).  
 
Other conventional approaches. There are a number of other approaches to data analysis with 
incomplete data shown to produced biased estimated or significance tests. Mean imputation uses the 
average from the sample to replace missing values on a variable. Mean substitution generally reduces 
the variance of variables and therefore leads to underestimate of standard errors (Enders & Bandalos, 
2004; Schafer & Schenker, 2000). Pairwise deletion is a method of handling data and sometimes is an 
option available with OLS regression procedures. With pairwise deletion, a covariance (or correlation) 
matrix is computed where each element is based on the full number of cases with complete data for each 
pair of variables. The attempt is to maximize sample size by not requiring complete data on all variables 
in the model. This approach can lead to serious problems and assumes data are MCAR (Little, 1992). 
Last observation carried forward uses the most recent value obtained for a participant in a longitudinal 
study. This approach is sometimes thought to be a conservative approach but can lead to biases in 
either direction (Molenberghs & Kenward, 2007). Hot-deck imputation replaces values with values from 
similar other cases, which can lead to substantial biases in regression analysis (Schafer & Graham, 
2002). 
 
 Modern Missing Data Methods. Modern approaches, in particular multiple imputation (MI; Rubin, 
1987) and the full maximum likelihood (FIML; Dempster, Laird, & Rubin, 1977) approach used in 
structural equation modeling, produce superior estimates compared with listwise deletion and the other 
conventional methods mentioned above as long as data are at least MAR (Enders, 2022; Schafer & 
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Graham, 2002). The standard multiple imputation approach requires an initial step (the I Step) in which 
multiple data sets are imputed with some degree of uncertainty built into the imputed estimates. There 
are a number of different methods for doing this (see Enders, 2022, for a nice summary). Current 
recommendations are for approximately 10 to 20 imputed data sets (Graham, Olchowski & Gilreath, 
2007; 20 seems to be the most commonly suggested number lately). In the second step analyses (the P 
step), the multiple, imputed data sets are analyzed and results are combined (or "pooled") using 
variability across the multiple imputations to better estimate standard errors in the analysis. The process 
can be described as a Bayesian process using Monte Carlo simulation to make “draws” from a posterior 
distribution. Special software or special procedures within existing software are needed for multiple 
imputation, including SPSS Missing Values (which is an add-on with additional cost), several packages, 
such as mice and mitml in R, and free software Blimp (Enders, Keller, & Levy, 2018), which also 
handles multilevel data sets.  
 
Structural equation modeling packages, such as Mplus, the R lavaan package, and AMOS, use FIML 
that is employed seamlessly in a single step when specifying a model (Mplus also can be used with MI). 
Regression models can be specified within these packages conveniently by simply requesting FIML 
estimation (often it is the default). These packages also easily extend regression models to mediational 
models. And with Mplus, continuous and categorical variables can be analyzed. 
 
Auxiliary variables. Simulation studies illustrate that including potential causes or correlates of the 
variables with missing values (known as “auxiliary” variables) as part of the analysis (either with MI or 
FIML) has important advantages when data are only MAR, particularly when the association of those 
with the variable with missing values is high (e.g., > .4) and when the amount of missing data is large 
(e.g., > 25%; Collins, Schafer, & Cam, 2001; Graham, 2003). Auxiliary variables are included in the 
imputation or estimation (in the case of FIML) without necessarily being included in the model. The T1 
values of the dependent variable can be included in the longitudinal attrition case, and this could often 
serve as a key auxiliary variable. Because inclusion of auxiliary variables in the analyses increases the 
likelihood of meeting the MAR assumption and can reduce the bias when data are MNAR, it is likely 
preferable to use modern missing data methods with auxiliary variables over listwise deletion even if 
there is no way to know whether the MAR assumption is valid or not.  
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