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Multivariate Analysis of Variance 
 
Multivariate analysis of variance (MANOVA) compares groups on a set of dependent variables 
simultaneously. Rather than test group differences using several separate ANOVAs and run the risk of 
increased familywise error (probability of one or more Type I errors), the MANOVA approach makes a 
single comparison.1 MANOVA is appropriate only when the several dependent variables are related to one 
another and the pattern of group differences expected for all of the dependent variables is in the same 
direction. The multiple measures can be several scale scores, individual items, or other related measures. 
An example might be a researcher's interest in which of several psychotherapy approaches (independent 
variable) differ in their ability to reduce psychological distress, where several measures of psychological 
distress, including depression, anxiety, and perceived stress are analyzed together (as dependent 
variables). Alternatively, one might analyze several subscales of depression, such as positive affect, 
negative affect, and somatic symptoms. MANOVA provides a convenience with a different type of omnibus 
test of all of the measures at once.  
 
The null hypothesis tested with MANOVA is that all of the dependent variable means are equal. Because 
the algebraic equations become increasingly complex with multiple dependent variables, multivariate 
analysis are usually described in terms of matrices that summarize the multiple dependent measures. So, 
the null hypothesis is also a test of whether the vectors (columns) of means are equal across groups. A 
significant result indicates that one or more of the dependent-variable means differ among groups. Although 
usually a set of univariate ANOVA comparisons will be consistent with the MANOVA, there are some 
circumstances in which the results may be at odds with one another, typically because the MANOVA 
differences were somewhat weak and did not quite reach the significance level and because separate 
ANOVAs were more sensitive, focused tests of differences. A typical example would be when only one of 
several dependent measures shows a pattern of differences among the groups, resulting in an overall 
nonsignificant multivariate test but a significant univariate test for one specific measure.  
 
Hotelling's T2 
There are several test statistics that are used with MANOVA (we had a brief introduction to them with 
repeated measures ANOVA). In the first of the multivariate test statistics, Hotelling (1931) developed a 
generalization of Gosset's t-test for the univariate case, now referred to as Hotelling's T2. One way to state 
the univariate t-test is the following: 
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The difference between two group means, 1y  and 2y , in the numerator is evaluated relative to the standard 
error given in the denominator. In words, the standard error estimate is the square root of the weighted 
pooled variance divided by the group sample sizes and represents an estimate of sampling variability of the 
difference between the means. Pituch and Stevens (2016) show that, with a little algebra, the square of the 
t-test can be restated as  
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1 Kesselman et al. (1998) make the argument that reducing Type I error is not good reason for conducting multivariate analysis of variance “There is 
very limited empirical support for this strategy. A counter position may be stated simply as follows: Do not conduct a MANOVA unless it is the 
multivariate effects that are of substantive interest. If the univariate effects are those of interest, then it is suggested that the researcher go directly to 
the univariate analyses and bypass MANOVA.” (pp. 361-362). Note also that the rationale to reduce familywise error and the need to use measures 
that are related and expected to show similar pattern of results are somewhat at odds with one another. To the extent that tests are redundant (e.g., 
measures are related) familywise error will be lower—it is maximal when tests are orthogonal.  
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Where s2 is the pooled variance that combines 2

1s  and 2
2s  from above, and the superscript -1 is the inverse 

(which is just 1/s2 here). Ignoring the first quantity on the right (the ratio of ns) for a minute, the three other 
quantities on the right represent a square of the mean differences ( )1 2y y−  divided by the pooled variance. 
This restatement of the t-test is statistically equivalent to the Gosset equation for the first t equation given 
above, but it is convenient for expanding and expressing in terms of matrices that can contain more than 
one dependent variable.  
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The bolded values of 1y  and 2y  represent column vectors of means (the ' symbol indicates the first 
parenthetical term is restated as a row), which contain the multiple dependent variables, and the S matrix is 
the variance-covariance matrix, containing variances for all of the y values on the diagonal and covariances 
on the off-diagonal. Hotelling's T2 can be transformed to be evaluated against an F-distribution for 
significance and conceptualized in terms of a ratio of between-group to within-group mean squares.  
 
Multivariate Statistical Tests 
The Hotelling's T2 is stated above in terms of two groups, but MANOVA can be used with any number of 
groups (i.e., levels of the independent variable), k, and any number of dependent variables, p. There are 
several highly related tests that are typically produced by MANOVA software procedures. Each of them can 
be stated in terms of the between-group and within-group variance. Below each is shown using W and B, 
which are matrices of the sums of squares of y and their cross-products (the variance and covariance 
matrices without dividing by df). All of these measures are tested against an F-distribution for significance. 
When the result is significant, it indicates that differences existing among the groups on the dependent 
variables taken together. Wilks' lambda is the simplest and most straightforward in terms of its analogous 
relation to (the opposite of the) F ratio or eta-squared in univariate ANOVA, involving the ratio of mean 
square within to mean square total. 
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Hotelling's Trace  
Hotelling’s Trace (or Lawley-Hotelling trace) is a generalization of Hotelling's T2, applying to k 
groups. The term “trace” comes from the matrix function that sums the diagonals of the matrix.  
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with N as total sample size, k as number of groups, H is the matrix of sum of squares cross-products 
for the hypothesis (explained) and E is the matrix sum of squares cross-products of errors.  

 
Pillai's Trace 

( ) 1trace − + H H E   
 
Roy's Largest Root  
Roy's largest root (or sometimes Roy's greatest root) is the largest eigenvalue (see the "Principal 
Components" handout, covered next) from 
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With only two groups, Pillai's Trace, Wilks' Lambda, Hotellings Trace, and Roy’s largest root are all equal. 
Pillai's Trace, Wilks' Lambda, Hotelling's Trace are asymptotically equivalent and will converge with larger 
samples. Olson (1976) suggests that Roy's largest root is too likely to produce Type I errors and should be 
avoided, that Wilks' lambda and Hotelling's trace are sensitive to violations of equal covariances in smaller 
samples, and he recommends Pillai's trace for general use.  
 
Variance Accounted For 
Owing to the close connection between Wilks' lambda and F from univariate ANOVA, we can compute eta-
squared for the variance accounted for in the multivariate dependent variable composite by groups 
(Tabachnick & Fidell, 2013), is simply 2 1η = − Λ . Partial eta-squared is then 2 1/1 sη = − Λ , where s is based 
on the number of dependent variables, p, and degrees of freedom 
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Assumptions 
The assumptions for MANOVA overlap with those of standard ANOVA (and regression), such as 
independence of observations. There are somewhat stricter assumptions, however, and violations can lead 
to fairly severe increases in Type I or Type II errors (Christensen & Rencher, 1997; Coombs, Algina, & 
Oltman, 1996). Instead of the assumption that the single dependent variable is normally distributed in the 
population, MANOVA assumes the dependent variables together are multivariately normally distributed. 
This assumption is stricter in that, even if all the individual dependent variables are normally distributed, 
they may not be multivariate normally distributed. The analogy to the equal variance assumption is that the 
covariance matrices are equal across groups. Bartlett and Box tests can be used to make these 
comparisons, but they may be highly sensitive to minor departures with large N and insensitive to larger 
departures with small N (Huberty & Petoskey, 2000). There are a variety of proposed solutions to violations 
of these assumptions (see Coombs & Algina, 1996).  
 
Other Possible Approaches 
It is possible to stick to separate univariate ANOVAs and use a familywise error correction (such as the 
Sidak-Bonferroni correction; see the "Post Hoc Tests" handout for my univariate course). When the 
dependent variables are uncorrelated or weakly correlated, there may be little logical benefit to using 
MANOVA. MANOVA, in general, is a less powerful and a less focused test than univariate ANOVA 
(Tabachnick & Fidell, 2013).  
  
Although MANOVA does not quite make an assumption that there is a single underlying construct explicitly, 
authors have cautioned against using MANOVA when the dependent variables are not related and are not 
expected to show similar results (Huberty & Petoskey, 2000). Otherwise, when the pattern of group 
differences is not the same across dependent variables, multivariate group differences will be weakened.2 
The MANOVA presumption that the dependent variables are assessing related or the same construct is 
never tested explicitly and could be in error. One simple alternative to MANOVA is to create a composite of 
the dependent variable and test group differences with a single (univariate) ANOVA. Composites should 
generally only be created when the variables are at least moderately correlated and are hypothesized to 
assess the same underlying construct. Such an analysis would differ from the MANOVA in two ways: (a) 
mean or summed composite indexes are usually equally weighted (e.g., measure 1 is not given more 
weight in the analysis than measure 2), whereas the MANOVA unequally weights the measures; and (b) in 
the single ANOVA of the composite, the composite is formed for the entire sample, whereas the MANOVA 
weights the measures maximizing the group differences. When the relative importance or weights of the 
items do not differ strongly and the correlation among the measures is high, one should not expect to find 
substantial differences between the composite ANOVA approach and the MANOVA approach.  

 
2 Negatively correlated dependent variables will work (Tabachnick & Fidell, 2013), so the dependent variables do not necessarily have to be recoded 
to be positively correlated for statistical reasons. Interpretation will be much simpler if the dependent variables are in the same direction, however.  
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A second, related approach would be to form an unequally weighted composite for the dependent variables 
based on an initial principal components analysis or factor analysis, approaches used to examine whether 
the underlying construct is unidimensional or not. Results from these initial analyses could then be used to 
form an unequally weighted composite and then analyzed with a univariate ANOVA (see Jackson, 1991, for 
a detailed discussion). This factor-scores approach usually results in a measure that is highly correlated 
with the unweighted composite (Fava & Velicer, 1992), and the univariate ANOVA results will nearly always 
lead to the same result whether factor scores are used or not. An advantage of the initial principal 
components or factor analysis is that the presumption about the unidimensionality of the set of dependent 
variables is explicitly tested.  
 
A third approach would be to use structural equation modeling (SEM), where latent variables are formed 
from three or more measures assessing the same construct (a confirmatory factor model) and then groups 
are compared. A regression-based approach (e.g., with one or more grouping variables predicting the latent 
variable) or group mean comparisons of the latent variables can be tested (Thompson & Green, 2013). 
Confirmatory factor analysis may have some advantages over the principal components or exploratory 
factor analysis method in its sensitivity for selecting quality items and arriving at the most accurate factor 
structure (Brown, 2014), and the SEM approach has advantages in its capability to compare measurement 
properties across groups (testing for measurement “invariance”), incorporate more complex error structures, 
and expand to more complex models. The SEM approach allows the researcher to explore the equality of 
variances and covariances between groups for all variables individually or together but also does not 
require that either be equal across groups.  
 
Extensions 
The assigned reading (Pituch & Stevens, 2016) and the discussion above focus on a simple case in which 
two groups are compared, but MANOVA can be generalized to include more groups or multiple factors and 
to include covariates (MANCOVA). It is even possible to test multiple repeated measures with MANOVA 
(doubly multivariate), random effects, or block designs. MANOVA is also a simple case of regression 
analysis (see Timm, 2002, for proofs), so multivariate regression is also possible. 
 
Follow-up post hoc tests can also be conducted (see Pituch & Stevens, 2016 for a more complete 
discussion). One test is the Roy-Bose simultaneous confidence interval approach. This is a generalization 
of the Scheffé test and is therefore equivalent to the overly conservative adjustments made by the 
Bonferroni correction. The other approaches used tend to employ the Bonferroni correction or a step-down 
or step-up procedure. Several of the alternative corrections, such as the Sidak-Bonferroni (discussed in the 
"Post Hoc Tests" handout in my univariate course) or step approaches (e.g., Hochberg’s) can be adapted 
for specific-group for multiple unplanned multivariate tests or if follow-ups involve univariate comparisons 
planned contrasts or Tukey pairwise comparisons can be used.  
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