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Link Functions and the Generalized Linear Model 
The Logit Link Function 
Logistic regression can be thought of as consisting of a mathematical transformation of a standard regression 
model. Keep in mind that the transformation used in logistic regression is a transformation of the predicted 

scores (Ŷ ), which is different from transforming the dependent variable (Y). The transformation in logistic 
regression is called the logit transformation (so sometimes logistic is referred to as a logit model if there is a 

binary independent variable). Instead of using Ŷ , the natural log of the probabilities is used. 
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The primary reason why the logit transformation function is used is that the best line to describe the 
relationship between X and Y is not likely to be linear, but rather an S-shape. Secondly, the conditional 
distribution of Y (i.e., the residuals) will differ from the conditional distribution when the outcome is continuous. 
The residuals will not be normally distributed and they cannot be constant across values of X.  Because Y has 
only two possible values 0 and 1, the residuals have only two possible values for each X. With residuals 
determined in this way, they are unlikely to be normally distributed. Moreover, instead of a normal distribution 
of errors, we assume the errors are logistically distributed. The basis of the logit link function is the cumulative 
frequency distribution, called a cumulative distribution function or cdf, that describes the distribution of the 
residuals. The binomial cdf is used because there are two possible outcomes. 
 
The Probit Link Function 
The logit link function is a fairly simple transformation of the prediction curve and also provides odds ratios, 
both features that make it popular among researchers. Another possibility when the dependent variable is 
dichotomous is probit regression.1 For some dichotomous variables, one can argue that the dependent 
variable is a proxy for a variable that is really continuous. Take for example our hypothetical child age and 
divorce study. Divorce might be the dichotomy that is ultimately observed, but there may be an underlying 
propensity toward divorce falling along some continuum related to marital satisfaction. Only when the 
propensity exceeds some threshold value on the continuum do we observe 1 (divorce) on the binary variable 
instead 0 (married). This underlying continuous variable is often called a latent response variable.2 If we think 
about a regression analysis predicting the underlying latent variable, we have a probit analysis. Below, I use Y* 
(the Greek letter eta, , is sometimes used instead) to refer to the latent predicted score.  
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If the true underlying variable we are predicting is continuous, we can assume the errors are normally 
distributed as we do in practice with OLS.3  In this case, instead of using the logistic cdf as with logistic 
regression, we can use a link function based on the normal cdf. The symbol 1 ˆ[ ]p -1 is used to designate the 
probit transformation of the predicted values—the link function. The -1 superscript refers to the inverse of the 
cdf to correspond with the cumulative probability that Y is equal to 1. The following formula describes the 
normal cdf (viewer discretion advised). 
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Z is a standardized value, p is the mathematical constant, and exp is the exponential function. The figure below 
illustrates the concept, using Y as the observed score, Y*, and  (tau) as the threshold. 

 
1 Probit regression was developed by Edwin Wilson and Jane Worcester (1943) before logistic regression. Logistic regression, which was developed by 
Joseph Berkson (1944), was developed afterward but has become the much more dominant form of regression for binary outcomes.  
2 This use of the word "latent" is different from that used in structural equation modeling (SEM). In SEM, latent variables are estimated from several 
measures ("indicators") to account for measurement error in prediction.  
3 Although the Y* distribution is assumed to be normal, we do not have to posit that there is a continuum underlying the observed binary Y in order to use 
probit regression. It is enough to simply think of a propensity for Y to equal 1 given some value of X even if no continuum actually exists. 
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Because the Y* distribution is assumed to be normal, the unstandardized probit coefficients represent a 
change in the z-score for Y* for each unit change in X. You can think about this as a partially standardized 
solution, with the dependent but not the independent variable standardized (although we are not actually 
standardizing Y, we are using a normal transformation of the predicted values). The next step is to standardize 
X to obtain a fully standardized solution, which provides a familiar metric and a convenient magnitude of effect 
for the association between each predictor and the response. Because probit values are essentially 
standardized scores units, the normal cdf can be used in a computational spreadsheet (e.g., 
=NORM.DIST(A1,0,1,TRUE) in Excel) or in a statistical software package to obtain the predicted probability 
that Y = 1 given the obtained values of B0 and B1 for some particular chosen value of X.  
 
The probit regression is related to polychoric correlations, which does not require designation of an explanatory 
and response variable (i.e., a symmetric measure of association). Polychoric correlations were originally 
developed by Karl Pearson (1901) to correct for the loss of information in the usual Pearson correlations due to 
categorization of a continuous variable (see Olsson, 1979; MacCallum, Zhang, Preacher, & Rucker, 2002).4 
The concept of Y* is the same as that invoked to conceptualize probit analysis, where the polychoric 
correlation represents the correlation between two Y* variables. The variable Y* is a true value that is not 
observed but leads to the observed response of Y, which is binary or ordinal. 
 
Probit Regression vs. Logistic Regression 
Probit regression and logistic regression can both model a binary dependent response. The difference 
between the two is just the link (canonical link) and error distributions (variance) assumed. As we know from 
the binomial test, with reasonably large N the normal and binomial distributions are very similar. Here is a 
picture of the cdf for the normal, standard logistic (usual, raw logistic), and the standardized logistic (assuming 

a standard deviation equal to / 3 1.81  , where  is the mathematical constant pi; Long, 1997, p. 48). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From J. S. Long, 1997, p. 43 

 
4 The term polychoric is used more generally, but tetrachoric correlations are a special case of polychoric correlations involving only binary variables, and 
polyserial correlations are those involving the correlation between a binary and a continuous variable. Note that these are different from the special 
cases of the regular Pearson correlation, such as phi, point-biserial, or Spearman’s rho correlations, because, with polychoric correlations corrections 
are being made to their magnitude.  
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As this figure suggests, probit and logistic regression models nearly always produce the same statistical result. 
The unstandardized coefficient estimates from the two modeling approaches are on a different scale, given the 
different link functions (logit vs. probit), although the logistic coefficients tend to be approximately 1.81 larger 
than probit coefficients.5 Different disciplines tend to use one more frequently than the other, although logistic 
regression is by far the most common. Logistic regression provides odds ratios, and probit models produce 
easily defined standardized coefficients.  
 

Generalized Linear Models 

Using this same idea about link functions, we can transform any predicted curve to conform to different 
assumptions about the form of the relationship and the error distribution (Nelder & Wedderburn, 1972). We can 
think of all of these as part of the same generalized linear model. To denote the predicted curve for continuous 
variables, I use  for the expected value of Y, usually referred to as E(Yi), at a particular value of X.  For the 
predicted curve of dichotomous variables (logit link and log-log link), I also use , for the expected probability,
 ˆE p  as is common in the generalized linear modeling literature. The following formulas describe the link 

functions for different distributions: 
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The log-log link function is for extreme asymmetric distributions and is sometimes used in complementary log-
log regression model applications including survival analysis applications. The Poisson and negative binomial 
links are for regression models with count data (see forthcoming Regression Models for Count Data handout). 
Generalized linear models are extremely useful because the regression model can be "linearized" to 
accommodate any form of predictive relationship and a variety of error distributions. Software packages, such 
as SPSS (Genlin), SAS (PROC GENMOD), and glm in R, allow users to specify link functions and distributions 
for a particular analytic circumstance.  
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5 The difference tends to vary between about 1.6 and 1.8 and depends on the overall proportion of the outcome. This difference in units is connected to 
the variances of the logistic and normal probability distributions. The standardized logistic variance, which is approximately 1.81, leads to a cdf that is 
very close to the normal cdf, but this is based on the average across all values of X. 
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Probit Example 
I retested the multiple logistic model with probit just to compare the results of the two types of models. First, 
here are the logistic results again for comparison. 
 

Logistic Results for Comparison 

 

 

 

SPSS 
plum w1hheart with w1sex w1activ w1cesd9 w1neg 
/link = probit 
/print= parameter summary. 
 

  

 
In SPSS, obtain the standardized coefficients by first standardizing the predictors (make sure the same N is 
used), descriptives vars=w1sex(zsex) w1activ(zactiv) w1cesd9(zcesd9) w1neg(zneg) /save. and then use the same 
plum command but with zsex, zactiv, zcesd9, and zneg as the predictors. Only use the coefficients 
from this run and ignore the significance tests. 
 
R 
> probmod2 <- glm(w1hheart ~ w1sex + w1activ + w1cesd9 + w1neg, family=binomial(link="probit"), data=mydata) 
> summary(probmod2) 
 
Call: 
glm(formula = w1hheart ~ w1sex + w1activ + w1cesd9 + w1neg, family = binomial(link = "probit"),  
    data = d) 
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept) -0.72853    0.11834  -6.156 7.46e-10 *** 
w1sex       -0.54823    0.11928  -4.596 4.30e-06 *** 
w1activ     -0.02360    0.02670  -0.884    0.377     
w1cesd9      0.02044    0.01260   1.622    0.105     
w1neg        0.03245    0.10588   0.306    0.759     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 625.72  on 691  degrees of freedom 
Residual deviance: 602.36  on 687  degrees of freedom 
AIC: 612.36 
 
Number of Fisher Scoring iterations: 4 
 

 

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

95% C.I.for EXP(B)

Lower Upper

Step 1 a w1sex

w1activ

w1cesd9

w1neg

Constant

-.978 .214 20.824 1 .000 .376 .247 .572

-.041 .048 .721 1 .396 .960 .874 1.055

.035 .022 2.550 1 .110 1.036 .992 1.082

.068 .186 .132 1 .716 1.070 .743 1.542

-1.199 .206 33.922 1 .000 .301

a. 

Model Summary

Step

1 602.480 a .033 .055

a. 

Model Fitting Information

Model Chi-Square df Sig.

Intercept Only

Final

503.849

480.495 23.355 4 .000

Link function: Probit.

Parameter Estimates

Estimate Std. Error Wald df Sig.

95% Confidence Interval

Lower Bound Upper Bound

Threshold [w1hheart = .00]

Location w1sex

w1activ

w1cesd9

w1neg

.729 .118 37.897 1 .000 .497 .960

-.548 .119 21.124 1 .000 -.782 -.314

-.024 .027 .781 1 .377 -.076 .029

.020 .013 2.631 1 .105 -.004 .045

.032 .106 .094 1 .759 -.175 .240

Link function: Probit.
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Notice that SPSS and R give the intercept (threshold) with a different sign. You can use the reghelper 
package and the function beta to obtain the standardized solution. (The standardized coefficients from R also 
could be obtained in the same way I obtained them in SPSS, by first standardizing the predictor variables, 
rerunning the analysis, and using only the coefficients, now standardized coefficients.) Here are the 
standardized results: 
 
> #ignore significance tests--report the tests from the unstandardized output 
> #see Long p. 70 for discussion of standardized probit 
> library(reghelper) 
> beta(probmod2, x = TRUE, y = FALSE) 

 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept) -0.99954    0.05881 -16.997  < 2e-16 *** 
w1sex.z     -0.26725    0.05815  -4.596  4.3e-06 *** 
w1activ.z   -0.05283    0.05976  -0.884    0.377     
w1cesd9.z    0.09659    0.05955   1.622    0.105     
w1neg.z      0.01836    0.05990   0.306    0.759     

 
Write-up 
I have not included a write-up example for the probit analysis. It would proceed exactly as with the logistic 
analysis except there are no odds ratios to report. I would encourage you to add the standardized coefficients, 
however. 
 
 
 


