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Overview of Regression Assumptions and Diagnostics 
Assumptions 
Statistical assumptions are determined by the mathematical implications for each statistic, and they set 
the guideposts within which we might expect our sample estimates to be biased or our significance tests 
to be accurate. Violations of assumptions therefore should be taken seriously and investigated, but they 
do not necessarily always indicate that the statistical test will be inaccurate. The complication is that it is 
almost never possible to know for certain if an assumption has been violated and it is often a judgement 
call by the researcher on whether or not a violation has occurred or is serious.  
 
You will likely find that the wording of and lists of regression assumptions provided in regression texts 
tends to vary, but here is my summary. 
 
Linearity. Regression is a summary of the relationship between X and Y that uses a straight line. 
Therefore, the estimate of that relationship holds only to the extent that there is a consistent increase or 
decrease in Y as X increases. There might be a relationship (even a perfect one) between the two 
variables that is not linear, or some of the relationship may be of a linear form and some of it may be a 
nonlinear form (e.g., quadratic shape). The correlation coefficient and the slope can only be accurate 
about the linear portion of the relationship.  
 
Normal distribution of residuals. For t-tests and ANOVA, we discussed that there is an assumption that 
the dependent variable is normally distributed in the population. More accurately, ordinary least squares 
regression (and therefore the statistical tests it subsumes), assume that the residuals, or the conditional 
values of the dependent variable, are normally distributed. In other words, after we use predictors to 
account for the variance in Y in the regression model, the assumption states that the residual values are 
normally distributed in the population. As we know from the central limit theorem, we can often have 
population distributions that are fairly nonnormal without any serious impact on the statistical tests, 
because the sampling distribution will tend to be normal. This is true for regression analysis as well (see 
Box & Watson, 1962; Lumley, Diehr, Emmerson, & Chen, 2002, for example). It is very important to be 
aware that this assumption only pertains to the dependent variable Y not the independent variables 
(predictors), X. There is no assumption about the independent variable distribution. In fact, it is perfectly 
reasonable even to have a binary independent variable, which is not at all normally distributed.  
 
Residuals are independently and identically distributed (i.i.d). This assumption combines two points. The 
first is that residuals, or observations, are independent of one another and thus are not correlated. 
Generally, we tend to take for granted that this is true, but we need to be aware of some circumstances 
in which it may not be true. When couples, family members, students in classrooms, or employees within 
companies, are treated as separate cases in a data set, we may be violating this assumption, because 
they will tend to have similar values within units (e.g., similar IQ scores within a family) and are therefore 
correlated, or not independent. The second part of the i.i.d. assumption is that the distributions of Y for 
each value of X (i.e., the conditional distribution, Y|X) are the same for all values of X. This assumption is 
usually stated in terms of having the same variance at each value of X, or homogeneity of variance 
(heteroscedasticity or constant variance)—what we know in ANOVA terms as equal group variance. The 
assumption is broader in that it states that the distributions are identical, so the shape, rather than just 
the variance is the same.  
 
No measurement error in the independent variables. As we discussed last term, measurement error 
tends to attenuate (decrease the magnitude) of the correlation coefficient. For unstandardized slopes, 
that pertains to the independent (predictor variables), because X appears in the denominator of the slope 
equation. Measurement error increases the variance of X and therefore it decreases the magnitude of the 
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slope. Standardized coefficients are impacted by measurement error in either X or Y, having the same 
attenuating effect. In multiple regression, the attenuating effect of measurement error impacts the 
correlations among the independent variables (r12) and the correlation among covariates (other 
independent variables and the dependent variable (ry2). The consequence is that covariates may not be 
adequately controlled to the extent that they have measurement error. The assumption is sometimes 
stated in terms of the requirement that X is "fixed" (in contrast with X being "random") which indicates 
that each time X is measured the value will be the same as long as the true score is the same.  
 
Diagnostics 
There are two basic approaches to exploring whether assumptions violations may be a serious concern. 
One is by inspecting numeric indexes and one is by inspecting graphs of the data. Below are some 
common indexes used for quantifying the extent to which violations of assumptions might have occurred, 
and I will illustrate some graphical methods in subsequent handouts. Keep in mind that the point of most 
of these indices is not to determine whether there is a "statistically significant violation" of the 
assumption, because we cannot determine for certain whether a violation has occurred or whether it is 
severe enough for us to be concerned. There are, however, some recommended cutoffs for their values 
that have been suggested by authors based on simulation studies (see "Summary of Regression 
Diagnostics" handout for details).  
 
Normal distribution of residuals. Most of the diagnostics relevant to the normality assumption are 
focused on identifying outliers. Outliers cannot be strictly defined and identifying an outlier may not 
necessarily mean that it should or can be legitimately removed. Outlier diagnostics generally identify 
whether an observation is an outlier on X (which are not really relevant to the assumption violation), an 
outlier on Y, an outlier on both, or an influential data point, meaning that the presence of the outlier 
affects the regression estimates.  
 
There are some significance tests for whether a distribution is likely to be normal in the population, and 
these can be applied to residuals from a regression model. The difficulty with interpreting these tests is 
that nonnormal distributions tend to be less problematic with larger sample sizes than with smaller 
sample sizes (think about the impact of outliers, for example), and statistical tests may lack sufficient 
power with small samples and identify small effects as significant with large samples.  
 
Although researchers may often use a ratio of skewness or kurtosis to their estimated standard errors, 
comparing the ratio to a z- or t-distribution for significance, this is probably not the best test. There are a 
number alternative methods that have been proposed (see D'Agostino, 1986 and DeCarlo, 1997 for 
reviews). DeCarlo has some macros that will compute some of the tests, 
http://www.columbia.edu/~ld208/. There are several other tests that examine whether the distribution 
conforms to a theoretically normal distribution, such as the Wilks-Shapiro test (Shapiro & Wilk, 1965) or 
the Looney-Gulledge test (Looney & Gulledge, 1985). None of these tests can really distinguish whether 
there are serious assumption violations or not, only significant ones. 
 
Two common indices for outliers on X variables are leverage (hii) and Mahalanobis distance (MD). 
Leverage indicates the distance from the mean of X, and with multiple predictors the collective distance 
of all of the X variables from their collective mean (a "multivariate" distance measure). The equation 
below is simplified for the single predictor case, 
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where Mx is the mean of X, and x is the deviation score for X, where x X X= − . SPSS adjusts this value 
and reports the "centered" leverage, which is equal to ( )* 1 /ii iih h n= − . 
 
Mahalanobis distance is another common multivariate distance measure, used widely across many 
applications, that provides a single number for each case about the distance of a case's X values, taken 
together, from a central multivariable mean for all cases. Because multiple variables are involved, the 
equation is typically expressed in matrix notation,1 but one can more simply consider a case where all of 
the X variables are uncorrelated. In that instance, Mahalanobis distance is the sum of squared 
independent z-scores (Darlington, 1990) 
 

2 2 2
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 or, in the independent case, it is the sum of squared deviations of the variables taking into account their 
variances, MD also can be closely related to leverage, ( )* 1i iiMD h n= −  .  
 
Outliers on Y are usually defined by the residuals, ˆe Y Y= − . Residuals are hard to interpret unless they 
are standardized, however. And as so many quantities in statistics, there are several suggestions about 
how to standardize them. Standardized residuals simply divide by the standard deviation of the residuals. 
An improvement on this index is to calculate the distance of the observed point, Yi, from the predicted 
point when the regression has been re-estimated without using the observed point, Y(i). The i in 
parentheses (i) subscript indicates that the case is deleted in the computation. Studentized residuals use 
information about the fit of the model, the mean squared residual (MSres, or mean-square error, MSE), in 
the denominator. The deleted studentized residual is more sensitive to outliers, because the potentially 
problematic point is removed when estimating the predicted point,  
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Influence statistics identify cases with outlying values on X and Y, such as Cook's distance, or the effect 
of removal of the case on the predicted values, such as dffits, or the regression coefficients, dfbetas.  
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where the subscript k is represents a coefficient for particular predictor, such as B1. 
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1 Mahalanobis distance involves deviations of X variables from their means, taking into account all of the variance-covariances among the X 
variabes, ( ) ( )1
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The standardized versions of dfbetas or dffits (not shown here) may be more useful for interpreting 
magnitude.  
 
Nonconstant variance 
There are several tests for constant variance (or homoscedasticity) across the values of X that attempt to 
assess (at least one aspect of) the i.i.d. assumption. Nonconstant variance can lead to incorrect standard 
errors, although it does not affect the regression coefficients themselves. A modification of the Levene's 
test for continuous predictors is also known as the Brown-Forsythe test (see Box 4.4.1 in Cohen, Cohen, 
West, & Aiken, 2003). The Cook-Weisberg (Cook & Weisberb, 1983) and White (1980) tests are 
alternatives. As with the normality tests, these tests could have insufficient power in small samples and 
power to detect minor violations in large samples, precisely the opposite of the circumstances when 
detecting violations may be the most important. There is not an accepted magnitude cutoff for these tests 
(although see your text, pp. 120, 146 for one common cutoff), so deciding when there is really a serious 
violation is difficult. Also note that these tests may also be affected by problems other than nonconstant 
variance, such as nonlinear relationships.  
 
Nonindependent Residuals  
Testing for the non-independent residuals, another aspect of the i.i.d assumption, can be done with the 
Durbin-Watson test (Durbin & Watson, 1950,1951), also with similar potential problems with interpreting 
significance and deciding whether the magnitude is important.  
 
Nonlinear Relations 
Nonlinear relationships can be examined through scatterplots of the original variables, or more 
sensitively, by examining a scatterplot of residuals against X values. Nonlinear relationships can also be 
tested by modifying the regression model to test for them, an analysis approach which we will discuss 
soon.  
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