Raudenbush, S. W. Bryk, A. S. (2002). Hierarchical línear models: Applications and data analysis methods. 2nd edition. Newbury Park , CA : Sage

HIERARCHICAL LINEAR MODELS

Figure 5.2. Illustration of the Contextual Effect, β_c , Associated with Attending School 2 versus School 1

variables omitted from the model. They may also signal a statistical artifact where $\overline{X}_{,j}$ carries part of the effect of a poorly measured X_{ij} . Whatever their source, past empirical research indicates that compositional effects occur with considerable regularity (see Willms' [1986] review).

Statistical Model Group-Mean Centering Grand-Mean Centering						
$Y_{ij} = \beta_{0j} + \beta_{1j}(X_{ij} - \overline{X}_{.j}) + r_{ij}$ $\beta_{0j} = \gamma_{00} + \gamma_{01}\overline{X}_{.j} + u_{0j}$ $\beta_{1j} = \gamma_{10}$				$Y_{ij} = \beta_{0j} + \beta_{1j}(X_{ij} - \overline{X}_{}) + r_{ij}$ $\beta_{0j} = \gamma_{00} + \gamma_{01}\overline{X}_{.j} + u_{0j}$ $\beta_{1j} = \gamma_{10}$		
$\begin{array}{l} \gamma_{01} = \beta_{b} \\ \gamma_{10} = \beta_{w} \\ \beta_{c} = \gamma_{01} - \gamma_{10} \end{array}$			$\begin{array}{l} \gamma_{01} = \beta_{\rm c} \\ \gamma_{10} = \beta_{\rm w} \\ \beta_{\rm b} = \gamma_{01} + \end{array}$			
	Estimat	es Using Higi	h School and Bey	yond Data		
	Coefficient	se		Coefficient	se	
$\hat{\gamma}_{00}$	12.648	0.149	$\hat{\gamma}_{00}$	12.661	0.149	
$\hat{\gamma}_{01} = \hat{eta}_{ m h}$	5.866	0.362	$\hat{\gamma}_{01} = \hat{\beta}_{c}$	3.675	0.378	
$\hat{\gamma}_{10} = \hat{\beta}_{\rm w}$	2.191	0.109	$\hat{\gamma}_{10}=\hat{eta}_{ extbf{w}}$	2.191	0.109	

a. Not directly estimated but can be determined from the sampling variance-covariance matrix for the γ coefficients.

 0.378^{*}

3.675

5.866

0.362^a

140