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Sample Size Issues and Power 
There are two sample size issues to be concerned about. One issue has to do with the minimum number of 
cases needed for using multilevel regression to avoid biases. The second issue concerns sufficient 
statistical power needed for obtaining significance. Generally, having more groups is more important than 
having more cases per group for either of these concerns (see Scherbaum & Ferreter, 2009, for a review). 

 
Convergence and estimation bias 
It is important to consider the minimum number of cases needed to ensure the model converges and that 
sample estimates are not biased. Most simple models with 50 or more groups and approximately 5-10 
cases per group will not have convergence problems (e.g., McNeish & Stapleton, 2016). More cases may 
be needed for convergence if the model is more complex, when there is more missing data (unbalanced nj), 
and when more slope variances are estimated (Raudenbush, 2008). For binary outcomes, the likelihood 
that a model will not converge can be quiet high when the number of groups is low (e.g., < 30-50), the 
number of cases per group is small (e.g., 5-20), and the proportion of events is low (Moineddin, Matheson & 
Glazier, 2007). 
 
Hox (2002; 2010; Hox, Moerbeek, & van de Schoot, 2018) and McNeish and Stapelton (2016) provide the 
best overviews of sample size issues with regard to minimum sample sizes needed. Under most conditions, 
fixed effects and their standard errors are unbiased. With fewer than 5 cases per group and fewer than 50 
groups, standard errors for fixed effects will be too small (increased Type I errors), and random effects 
(variances) and their standard errors may be underestimated. More recent evidence suggests that, with 
Kenward-Roger corrections (based on Satherthwaite degrees of freedom and adjustments to standard 
errors) or the bias reduced linearization (BRL; Bell & McCaffrey, 2002; aka cluster robust or CR2; Huang & 
Li, 2022; Huang, Wiederman, & Zhang, 2023), this bias in fixed effects tests can largely be addressed for a 
smaller number of clusters, particularly when there are more units within each cluster (Elff, Heisig, 
Schaeffer, & Shikano, Huang & Li, 2022; Hox & McNeish, 2020; McNeish, 2017). Thus, it seems prudent to 
make sure to use the Kenward-Roger or the CR2 degrees of freedom option1 whenever there are less than 
50 clusters.2 Bayesian estimation may also be a potential solution when the number of clusters is small, 
although its advantages over other methods depends on the choice of priors (Bolin, Finch, & Stenger, 2019; 
McNeish, 2016b) and may be limited to less complex models with few random effects (Elff et al., 2021; 
Yamamoto & Miyazaki, 2024).  
 
The poor estimates obtained with small group sizes may be offset by a very large number of groups (e.g., 
450 or more; Theall, et al., 2011). Maas and Hox (2004, 2005) distinguish between fixed effects tests and 
random effects test with respect to sample size requirements for adequate significance tests. Their results 
suggest that for variance tests, 100 or more groups will be needed to achieve nominal alpha levels. In their 
more recent review, McNeish and Stapleton (2016) came to the conclusion based on the Maas and Hox 
findings and others, stating "a minimum of 50 clusters with a cluster size of 50 are suggested with 100 
clusters being a more conservative figure, especially if FML estimation is utilized" (p.304). In general, REML 
should be the preferred method with smaller sample sizes (e.g., < 100 or higher), however.  
 
Models with noncontinuous outcomes seem to require additional groups to avoid convergence problems 
and for adequate power (Austin, 2010; Bauer & Sterbin, 2011; Moineddin et al., 2007; Paccagnella, 2011). 
Moineddin and colleagues found fixed effects statistical tests were generally correct for adaptive quadrature 
estimation if there are 30 cases per group and 30 groups or 50 groups and 5 cases per group. The 
Kenward-Roger df adjustment seems to help considerably with bias in statistical tests of fixed effects with 
small number of groups or cases per group (Bell, Ene, Smiley, & Schoeneberger, 2013; McNeish & 
Stapleton, 2014). PQL regression estimates have been notoriously poor (Breslow & Lin, 1995), but a study 
by McNeish (2106a) suggests that estimates using a restricted version of PQL (RPQL) may work well with 

 
1 Kenward Roger degrees of freedom and standard errors are now available in SPSS or in R lme4. The CR2 corrections are available in R with the 
MLMusingR (which can be used with lme4) or the clubsandwich packages, https://cran.r-project.org/web/packages/clubSandwich/index.html. 
2 While the Kenward-Roger and biased reduced/cluster robust adjustments may be comparable in most circumstances, results from Zhang and Lai 
(2024) suggest that the cluster robust estimates were less affected by heteroscedasticity.  

https://cran.r-project.org/web/packages/clubSandwich/index.html
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smaller number of groups and perform better than adaptive quadrature or Laplace methods in this case 
(see the handout “Multilevel Models with Binary and other Noncontinuous Dependent Variables” for more 
information on these estimators).   
 
Standard penalized quasi-likelihood (PQL) variance estimates, however, appear to be unbiased in this 
range of groups and cases per group (Austin, 2010). Variance estimates for adaptive quadrature were 
generally biased when the ratio of groups to cases per group was below 30:30 and were still biased even 
with many more groups (200) if there are few cases per group (5-10; Clarke, 2008). Statistical problems are 
likely to be worsened with unbalanced nj (Moineddin, Matheson, & Glazier, 2007), lower event frequency, 
and more complex models with more random effects, but more simulation work is needed on the variety of 
conditions that might exist in practice.  

 
Power 
The second important issue has to do with whether or not there is sufficient statistical power to find 
significance. One should consider power with regard to the particular hypotheses of interest. Fixed effects, 
in general, require fewer cases to have sufficient power, with “main effects” requiring fewer cases than 
cross-level interactions. Random effects generally require more cases for sufficient power. Significance 
tests of intercept variances require fewer cases than variance tests of random slopes (reliability is generally 
lower for slopes). Because cross-level interactions involve predicting variability of slopes, the sample size 
requirements for adequate power of tests of cross-level interactions may even surpass what is needed for 
adequate power of tests of random effects. Cross-level interactions appear to require more cases in each 
group as well (Mathieu, Aguinis, Culpepper, & Chen, 2012).  

 
Although some authors have suggested a minimum of 100 groups with 10 cases per group is needed for 
sufficient power to test fixed effects (Kreft, 1996), Hox (2010) concludes that 50 groups with 5 cases per 
group may be sufficient.3 For random effects (variances) and cross-level interactions, 100 to 200 groups 
with approximately 10 cases per group is likely to be needed for sufficient power to test these effects. But 
these are general recommendations, and power depends on several factors. 

 
Naturally, the best way to plan for the appropriate sample size is to compute power estimates. Hox (2010), 
Snijders and Bosker (2012), and Scherbaum and Ferreter (2009) have the best coverage of power 
computations. I do not present any power computation examples here, but Snijders and Bosker (2012) and 
Hox (2010) illustrate with several examples. I typically rely on software for computer power estimates. The 
PinT, https://www.stats.ox.ac.uk/~snijders/multilevel.htm#progPINT, and the Optimal Design (Spybrook, 
Raudenbush, Congdon, & Martinez, 2011), https://wtgrantfoundation.org/optimal-design-with-empirical-
information-od, programs are free online. I find the Optimal Design program to be the most user friendly and 
flexible for power computations.  
 
Growth curves and power 
Power is too infrequently discussed in the context of longitudinal growth curves, but the principles described 
above are likely to translate into the longitudinal application of multilevel models as well. That is, although 
one really only needs 3 time points (or even 2) for growth curve models theoretically, practically speaking, 
there may be issues with convergence, bias in random effects tests, or power issues with fewer than 5 
cases. Raudenbush (2008) makes the point that power in growth curve models depends on spacing 
between intervals and intraclass correlation coefficients in addition to the number of time points. Greater 
spacing (increased variance on X) and higher intraclass correlation coefficients (associated with more 
reliable estimates) will both increase power. Curvilinear models may need far more time points for sufficient 
power. Simulations by Muthén and Curran (1997) and power analyses I have conducted for my research 
suggest that 3 or 4 time points are nowhere near sufficient for power to test random effects for curvilinear 
coefficients (Diallo, Morin, & Parker, 2014). If curvilinear models are of interest, plan for perhaps twice as 

 
3 Note also that the impact of degrees of freedom and standard error corrections (e.g., KR or BRL/CR2) on power has not been studied.  

https://www.stats.ox.ac.uk/%7Esnijders/multilevel.htm#progPINT
https://wtgrantfoundation.org/optimal-design-with-empirical-information-od
https://wtgrantfoundation.org/optimal-design-with-empirical-information-od
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many cases and time points and a very rough guide. 
 
Power Analysis 
Power analyses can be conducted to determine whether an analysis already completed had sufficient 
power to find significance (sometimes referred to as post hoc power analysis) or it can be conducted when 
planning a study (a priori). The latter use of power analysis is by far the most common use of power 
analysis, so I will focus on that here. Typically a researcher is interested in determining whether a given 
sample size from an existing study will have sufficient power or in determining a sample size that will have 
sufficient power. In either case, one needs to know the effect size expected, but a range of standard values 
can always be used to obtain a range of power estimates or sample sizes.  
 
Effect Size. The effect size could be calculated from prior research in a related area using similar measures 
or a range of effect sizes may be used to estimate power at each sample size. When I have conducted 
power analyses, I have usually just used a range of effect sizes and calculate power with varying 
assumptions for each effect size. Although authors sometimes discuss unstandardized effect size 
estimates, it is often more convenient to work with standardized effect size estimates. The formula for 
calculating the standardized effect for nested data is (Raudenbush & Liu, 2000): 
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where δ is the standardized effect, γqq is a fixed effect estimate, τq

2 is the variance estimate of that 
parameter, and σ2 is the within-group variance. Thus, one can use this formula to estimate the effect size for 
the intercept using γ00 and τ0

2 or the slope using γ10 and τ1
2, for instance. Raudenbush and Liu (2000) 

suggest a standardized effect size of .2 represents a small effect, .5 represents a medium effect, and .8 
represents a large effect for the fixed effects. For random effects, they suggest .05, .10, and .15 should be 
used for small, medium, and large effect sizes (based on variance values for a standard normal variable). 
Note that power may differ considerably for a level-2 predictor because the design effect will tend to be 
much larger and this leads to lower power. Dziak and colleagues illustrate this difference in the context of 
multisite trials in which the intervention is applied at the group rather than the individual level (Dziak, 
Nahum-Shani, & Collins, 2012). Raudenbush and Liu (2001) give a slightly different formula for estimating 
standardized effects for growth curve models: 
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With values defined as above, except that the within-group variance is omitted.4 
 
Noncentrality parameter. Noncentrality parameter, which can be viewed as an estimate of the degree of 
difference the true alternative hypothesis value is from the null hypothesis value, illustrates what factors 
power depends on (Spybrook, et al., 2011, p. 33): 
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N is the number of groups and σδ

2 is the effect size variability, which is essentially an estimate of the 
variance of the slope taking into account sampling variability, defined as: 
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4The authors omit the within-person variance based on a rationale that the slope is not impacted by measurement error and estimates "true change." 
(p. 391, Footnote 4) 
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Standard errors. Because power of the Wald ratio is a function of the standard error (smaller standard 
errors lead to more power), it is instructive to look at the standard error formula, here for the slope, γ10. 
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And can be restated in terms of the ICC (or also in terms of the design effect).  
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In the above equations, γ10 is the fixed effect for the level-1 predictor, ρ is the ICC, nj is the number of cases 
per group, and N is the number groups (Raudenbush & Liu, 2000). Standard errors will increase and power 
will decrease for larger ICC and design effects. The standard error estimate for random effect, τ00, is: 
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The formula hinges largely on the ratio τ0

2/σ2 and can also be stated in terms of the ICC.  
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Within-group variance is nearly always larger than the between-group variance, usually many times larger. 
 
Snijders and Bosker approach to power computation. Snijders and Bosker (1995, 1999, 2012) explain 
power analyses in terms of standard errors in reference to the standard normal distribution (see also 
Scherbaum & Ferreter, 2009, for a nice overview). Using z-values from the normal distribution, their formula 
can be used to estimate the standard error for a standardized effect. 
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With a little algebra, one can also estimate the power using values of the effect size and standard error 
using 1 - probability value associated with the calculated z-value for the power estimate.  
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Optimal Design software (Spybrook et al., 2011, link given above) focuses on clustered randomized trials 
(i.e., experimental studies in which data are nested), so the focus is on the comparison of two groups and 
testing of a regression coefficient that represents the difference between two groups. Remember that with a 
binary predictor the regression coefficient is the difference between two groups: 
 

1 J Jj E CY Yβ = −  

 
where 

JEY is the mean of the experimental group and 
JCY is the mean of the control group.  

Optimal study design: Efficient allocation of resources. Authors writing about multilevel power analysis 
frequently focus on the costs of sampling multiple groups (or sites in a clinical trial) vs. sampling more cases 
per site (e.g., Raudenbush & Lui, 2000; Snijders & Bosker, 1999). The number of groups seems to have a 
more dramatic effect on power after a certain minimum group size has been achieved. Raudenbush and Liu 
summarize the contribution to the total cost with the following formula: 
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( )1 jT C n C N≥ +  
 

Where C is the cost of sampling an additional site (or group group) and C1 is the cost of sampling an 
additional individual within a site. Total cost then is a function of the sum of the contribution of these the site 
cost and the costs of all individuals within a site multiplied by the total number of sites. The researcher can 
then estimate feasible sample size by integrating the costs and the power estimation.  
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