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Example R2 Computation 
 

In multilevel models, there are no universally agreed upon measures of multiple R2 (total variance accounted 
for in the outcome), although several have been proposed (for reviews, see LaHuis, Hartman, Hakoyama, & 
Clark, 2014; Rights & Sterba, 2019; Roberts, Monaco, Stovall, & Foster, 2011). Because the R2 values are not 
strictly defined in this circumstance, they are often considered “pseudo- R2” values and I would recommend 
reporting them as “approximate variance accounted for.” Below I illustrate a couple of the possibilities using the 
Bryk & Raudenbush’s HSB data wihth mathach as the outcome variable. Following recommendations of the 
developers of these indices, the estimates below were obtained using full maximum likelihood (FML) rather 
than the default restricted maximum likelihood estimation (more on this distinction in a subsequent handout). 
To simplify calculations, the variance of the SES slope was not estimated. Snijders and Bosker (2012; see also 
LaHuis et al., 2012) recommend against estimating variance of slopes when computing R-squared estimates, 
but Hox (2010, p. 76) and Rights and Sterba (2019, 2020) have approaches for models with random slopes. 
The values form some R2 values can sometimes be negative, although this is not supposed to be theoretically 
possible. Negative values are likely to only occur when there is a very small proportion of variance accounted 
for by the predictors and probably could just be reported as 0. Software often has not output R2 values in the 
past, so they have tended to go unreported in the literature. The computations, however, are relatively simple;  
and having even an approximate variance accounted for is valuable. R2 values can be obtained in R, and 
beginning in Version 29, SPSS reports an R2 value but does not provide any documentation on which one or 
how it is computed. HLM does not report any R-square measures. 
 
Computations 
I’ve used the results from the HSB examples with math achievement and SES that I illustrated in class (see 
results from the handouts “Intercept Only Model Example (Random Effects ANOVA): SPSS, R, and HLM” and 
“ANCOVA Example (One Level-1 Predictor Assuming Homogeneous Slopes): SPSS, R, and HLM”). The “null 
model” (or intercept only) results come from the first handout and the “full model” results come from the second 
handout which included SES.  
 
The measure suggested by Snijders and Bosker (1999, pp. 102-103) is one option. This approach 
distinguishes proportion of variance accounted for in the individual-level outcome Yij by the level-l predictors 
from the variance accounted for in the group-mean level outcome by the level-2 predictors. 
 
Variance accounted for in ijY  by level-1 predictors: 
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Where the full refers to the model tested and null refers to the model without predictors, or the empty model. 

2 is the within-group variance and 2
0 is the between group (or intercept) variance.  

 
We do not have any level-2 predictors yet, but the variance accounted for in . jY  is calculated as: 
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B is the average cluster size in the notation used by Roberts and colleagues. I cheated on the computation for 
B, because I simply took the arithmetic average by dividing the total sample size, 7185, by the number of 
groups, 160. This approach may be vulnerable to the influence of groups with very large or very small sample 
sizes. The harmonic mean of group sample sizes (i.e., average nj) is recommended as a more accurate 
computation of B.  
 

Xu (2003) proposed an overall measure of variance accounted (r2 or 2
0 ”omega-squared”) for that does not 

require specific reference to level-1 or level-2 predictors or outcomes. I have yet to see this measure reported 
much in the literature to date, but Xu's simulation work suggests that it performs well. Only the within-group 
variance is used in this measure, which I obtain from the output above. 
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Xu uses 2 for the full model residual variance and 0
2 for the null model residual variance. Clearly the 

proportion of variance accounted for differs substantially from these two different approaches, so the definition 
used has important implications for the conclusions one might draw. 
 
Lahuis and colleagues (2014) review another total variance measure proposed by Nakagawa and Schielzeth 

(2013) that uses the variance of predicted values of Yij, given below as  ˆvar ijY .1 The predicted scores must be 

saved from the model and their variance calculated separately. In the equation below, 00 is the intercept 
variance and 2 is the within group variance. This R2 worked well in the Lahuis simulation, but I suspect will be 
less widely used until it is programmed into software packages.  
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The simulation study by LaHuis and colleagues (2014) suggested that all of the measures they examined 
worked well, except the variance accounted for measure at level-2, 2

2R , given above (the Xu measure for total 
variance account for given above was not examined in their study).  
 
Rights and Sterba (2019) propose a modified approach that avoids negative values for R-square. Their general 
framework divides potential variance accounted for up into several sources, fixed effects, random slope, and 
mean variation across groups ( 2

0 ). Instead of two models, using null and full model residuals as other 
measure do, they just derive values from the full model only, allowing for any number of level-1 or level-2 
predictors and random effects.  
 

2 explained variance from fullmodel
R

outcomevariance from fullmodel
  

 

Outcome variance differs depending on which source is used and does not have a very simple expression (see 
Rights & Sterba, 2019, for details).  
 
SPSS 
There is no indication in the SPSS documentation (e.g., command syntax documentation or Advanced 
Statistics manual) about which pseudo-R2 measures these are. The terms “marginal” and “conditional” refer to 
R-square measures in which the random effect is not included or included in the model, respectively (Orelien & 
Edwards, 2008). Note that the values do match the Rights and Sterba values obtained below with the r2mlm 
package. 

 
1 The MuMIn package with r.squaredGLMM function in R will compute the Nakagawa and Schielzeth (2013) measure.  



Newsom   
Psy 526/626 Multilevel Regression, Spring 2024   3 
 

 
R code for computing the Xu pseudo-R-square measure 
> #get empty (or null) model using ML rather than REML 
> library(nlme) 
> modeln <- lme(mathach ~ 1, random = ~ 1|schoolid, data = mydata, method="ML") 
> summary(modeln) 

[output omitted] 
 
> #get full model using ML rather than REML 
> modelf <- lme(mathach ~ ses, random = ~ 1|schoolid, data = mydata, method="ML") 
> summary(modelf) 

[output omitted] 
 

> #compute Xu (2003) r-square manually 
> 1-(var(residuals(modelf))/var(residuals(modeln))) 
[1] 0.05285959 
 
> #Rights & Sterba (2019) R-square measures (random slopes allowed) 
> #in the output, sources of variance are f=level-1 and level-2 predictors combined 
> #(f1=level-1 predictors, f2=level-2 predictors), 
> #v=level-1 predictors via random slope, m=cluster specific means via random intercept 
> #fv and fvm are from multiple sources.  
> library(r2mlm) 
> r2mlm(modelf) 
$Decompositions 
                     total 
fixed           0.07680054 
slope variation 0.00000000 
mean variation  0.10453867 
sigma2          0.81866079 
 
$R2s 
         total 
f   0.07680054 
v   0.00000000 
m   0.10453867 
fv  0.07680054 
fvm 0.18133921 
 

For both the f (fixed effects only) and the fv values (fixed plus random slope) R2 = .077, and these seem to 
make the most sense to me in the context of how R-squared is defined elsewhere. As there is no random slope 
in this model, these two values are the same.   
 

Comments  
Reporting of these values is by no means universal at this point. One reason is that there has been 
disagreement about the best approach, because there is no simple parallel to the R2 obtained with standard 
OLS regression. In some instances, these proportion of variance measures can be negative. The issue of what 
to do with slope variance has also been a hindrance. More simulation work and consensus are likely needed 
and implementation in software packages is likely necessary before reporting of R2 becomes more widespread. 
However, I believe it is better to use some metric of variance accounted for than none at all. Multilevel models 
have been quite negligent in providing magnitude of effect information, including computing and reporting 
standardized coefficients, to date.  
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