Growth Curve Example with Time-Varying Covariate

For all of the examples below, the health variable has been centered so that poor = -2, fair = -1, good = 0, very good = 1, and excellent = 2, using a theoretically chosen point. Grand-mean or within-person centering (i.e., centering within context or group-mean centering) also could be used.

SPSS

*center health at the middle value (theoretical based centering). recode health (1=-2) (2=-1) (3=0) (4=1) (5=2).

*genlinmixed requires string id variable. STRING id (A4). COMPUTE id = STRING(rid, F4.0).

*time was a nominal variable, convert it to scale. variable level time (scale).

GENLINMIXED /DATA_STRUCTURE_SUBJECTS=id /FIELDS_TARGET= depress /TARGET_OPTIONS_DISTRIBUTION=NORMAL_LINK=IDENTITY /BUILD_OPTIONS_DF_METHOD=SATTERTHWAITE_COVB=ROBUST /FIXED_EFFECTS= time health_USE_INTERCEPT=TRUE /RANDOM_EFFECTS=time health_USE_INTERCEPT=TRUE_SUBJECTS=id COVARIANCE_TYPE=UNSTRUCTURED.

*this is the syntax for nonrobust estimation with Kenward-Roger SEs.
*MIXED depress WITH time health
 /METHOD = REML
 /PRINT = SOLUTION TESTCOV HISTORY
 /FIXED = time health | SSTYPE(3)
 /RANDOM = INTERCEPT time health | SUBJECT(rid) COVTYPE(UN)
 /CRITERIA=DFMETHOD(KENWARDROGER).

Generalized Linear Mixed Models

Model Summary

Target	depress Summed CESD score		
Probability Distribution		Normal	
Link Function		Identity	
Information Criterion	Akaike Corrected	4853.299	
	Bayesian	4884.984	
Information criteria ar	a likelihood (4839 137)		

Information criteria are based on the -2 log likelihood (4839.137) and are used to compare models. Models with smaller information criterion values fit better.

Coefficients of Determination

Pseudo-R Square	Marginal	.100
Measures	Conditional	.611

Note: the marginal value is for the approximate variance accounted for by the fixed effects and the conditional is both fixed and random effects together.

Fixed Coefficients ^a

					95% Confidence Interval	
Model Term	Coefficient	Std. Error	t	Sig.	Lower	Upper
Intercept	14.562	.6763	21.531	<.001	13.227	15.896
time	-2.061	.2851	-7.230	<.001	-2.623	-1.499
health	-2.442	.3871	-6.309	<.001	-3.206	-1.679

Probability distribution: Normal

Link function: Identity

a. Target: Summed CESD score

Covariance Parameters

Random Effect

					95% Confidence Interval	
Random Effect Covariance	Estimate	Std. Error	Z	Sig.	Lower	Upper
UN (1,1)	58.679	10.128	5.793	<.001	41.836	82.301
UN (2,1)	-7.322	3.777	-1.938	.053	-14.725	.082
UN (2,2)	1.874	2.490	.752	.452	.139	25.348
UN (3,1)	-9.760	4.117	-2.371	.018	-17.829	-1.691
UN (3,2)	.500	1.744	.286	.775	-2.919	3.918
UN (3,3)	5.756	2.855	2.016	.044	2.178	15.214

Covariance Structure: Unstructured

Subject Specification: id

R

Special code is needed to suppress the default estimation of multiple intercepts in the lmer function in the lme4 package whenever there is more than one random slope. Use 0+ before the name of all slope variable random effects after the first one. Here, time, which is the first random slope mentioned, does not need a preceding 0+.

> library(lme4)
> #health as a time-varying covariate > model1 <- lmer(depress ~ time + health + (time|rid) + (0+health|rid), data = mydata,REML=TRUE)</pre> summary(model1) Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] Formula: depress ~ time + health + (time | rid) + (0 + health | rid) Data: mydata REML criterion at convergence: 4851.5 Scaled residuals: 1Q Median Min Max 3Q -3.1883 -0.4793 -0.1445 0.3575 5.0283 Random effects: Groups Name Variance Std.Dev. Corr rid (Intercept) 46.843 6.844 1.225 1.107 -0.73 time rid.1 2.647 1.627 health Residual 34.673 5.888 Number of obs: 702, groups: rid, 234 Fixed effects: Estimate Std. Error df t value Pr(>|t|) 0.6251 274.1977 23.720 < 0.000000000000000002 *** 0.2852 232.4308 -7.158 0.00000000000016 *** (Intercept) 14.8266 -2.0417 time 0.00000000102 *** health -2.6376 0.3669 218.3959 -7.189 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Correlation of Fixed Effects: (Intr) time -0.578 time health -0.368 0.045 > VarCorr(model1) Std.Dev. Corr Groups Name (Intercept) 6.8442 rid 1.1067 -0.734time 1.6270 rid.1 health Residual 5.8884 > VarCorr(model1) #provides variances in variance form Groups Name Std.Dev. Corr (Intercept) 6.8442 rid 1.1067 -0.734time rid.1 1.6270 health Residual 5.8884 > rand(model1) #LR test compared to empty using mixture distribution boundary (singular) fit: see help('isSingular') ANOVA-like table for random-effects: Single term deletions Model: depress ~ time + health + (time | rid) + (0 + health | rid) npar logLik` AIC LRT Df Pr(>Chisq) 8 -2425.8 4867.5 <none> time in (time | rid) 6 -2428.1 4868.2 4.7024 2 0.09525 . health in (0 + health | rid)8 -2426.7 4869.3 1.7729 0 signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Newsom Psy 526/626 Multilevel Regression, Spring 2024

> confint(mode	ell) #pr	otile	1 ke l 1 hood	interva	uls t	or better	random e	ttects	tests
Computing prof	file con	fidence	e intervals	5					
	2.5	%	97.5 %						
.sig01 5	5.757858	21 7.9	9607605						
.sig02 -1	L.000000	00 -0.1	L857486						
.sig03 (0.068760	13 2.4	1634925						
.sig04 (0.00000	00 2.7	7303801						
.sigma 5	5.323380	02 6.3	3835116						
(Intercept) 13	3.595062	38 16.0)578266						
time -2	2.602112	96 -1.4	1804328						
health -3	3.377089	94 -1.8	3986010						
> library(MLML	usingR)								
<pre>> robust_mixed</pre>	d(model1)) #get	robust SE	estimat	es				
Standard error	type =	CR2							
Degrees of fre	eedom = :	Sattert	hwaite						
ES	stimate	mb.se	robust.se	t.stat	dt		Pr(>t	.)	
(Intercept)	14.827	0.625	0.678	21.870	195	<0.000000	000000000000000000000000000000000000000)2 ***	
time	-2.042	0.285	0.285	-7.162	232	<0.000000	000000000000000000000000000000000000000)2 ***	
health	-2.638	0.367	0.410	-6.426	148	<0.000000	000000000000000000000000000000000000000)2 ***	
Signif. codes:	: 0 '**	*'0.00)1'**'0.()1'*'0	0.05	'.' 0.1 '	' 1		

The warning boundary (singular) fit that occurred after using the rand() function suggests there may be something wrong with the estimation. Prior to requesting random slope tests, 1me4 does not provide any hints that something might be wrong in this model. You also may sometimes see a warning message after the profile likelihood confidence intervals that mentions a "non-monotonic profile" or "bad spline fit."¹ Both warning messages are hinting at a problem estimating the random effects. The boundary singularity message means that the within-person variance estimate is problematic (and one or more values in the matrix have been set to 0). The problem stems from too many random effects in the model with only three time points, a problem which becomes clearer by attempting to estimate the model in HLM.

HLM

This model differs from the SPSS and R models because the HLM program indicated that it did not have enough degrees of freedom to estimate the original model allowing for the HEALTH slope to vary. Consequently, I tested the model in which there is not a random effect for the covariate—HEALTH is assumed to have the same relationship to the outcome across respondents.

There are only three time points (the same as only three cases per group) and this puts restrictions on the number of random effects that can be estimated (either theoretically sometimes or practically) because of the within-person covariance matrix which will have six elements total (each of the three variances for intercept and two slopes and their three covariances) cannot be estimated in HLM. The fact that the parameterization in HLM will not allow for the estimation of an additional slope makes me suspicious that SPSS and R perhaps should not be producing solutions at all in this circumstance.

Summary of the model specified

```
Level-1 Model
  DEPRESS_{ti} = \pi_{0i} + \pi_{1i} * (TIME_{ti}) + \pi_{2i} * (HEALTH_{ti}) + e_{ti}
```

Level-2 Model

 $\pi_{0i} = \beta_{00} + r_{0i}$ $\pi_{li} = \beta_{l0} + r_{li}$ $\pi_{2i} = \beta_{20}$

Mixed Model

 $DEPRESS_{ti} = \beta_{00}$ $+ \beta_{10} * TIME_{ti}$ $+\beta_{20}*HEALTH_{ti}+r_{0i}+r_{1i}*TIME_{ti}+e_{ti}$

 $\sigma^2 = 36.15791$

¹ This is the message I received on another example.

warning messages: 1: In FUN(X[[i]], ...) : non-monotonic profile for .sig02 2: In confint.thpr(pp, level = level, zeta = zeta) : bad spline fit for .sig02: falling back to linear interpolation

•			
INTRCPT1, π_0	47.538	23	-5.13561
TIME, π_l	-5.135	61	1.10917
τ (as correlations))		
INTRCPT1, π_0	1.000	-0.7	07

TIME, π_1 -0.707 1.000

Random level-1 coefficient	Reliability estimate			
INTRCPT1, π_0	0.612			
TIME, π_I	0.058			
	a			

The value of the log-likelihood function at iteration 856 = -2.425749E+003

Final estimation of fixed effects:

Fixed Effect	Coefficient	Standard error	t-ratio	Approx. <i>d.f.</i>	<i>p</i> -value
For INTRCPT1, π_0					
INTRCPT2, β_{00}	14.839168	0.624616	23.757	233	< 0.001
For TIME slope, π_l					
INTRCPT2, β_{10}	-2.018598	0.286710	-7.041	233	< 0.001
For HEALTH slope,	π_2				
INTRCPT2, β_{20}	-2.644731	0.348884	-7.581	233	< 0.001
For HEALTH slope, INTRCPT2, β_{20}	π_2 -2.644731	0.348884	-7.581	233	<0.001

Final estimation of fixed effects (with robust standard errors)

(min robust standar	u error <i>s</i> j				
Fixed Effect	Coefficient	Standard error	<i>t</i> -ratio	Approx. <i>d.f.</i>	<i>p</i> -value
For INTRCPT1, π_0					
INTRCPT2, β_{00}	14.839168	0.678546	21.869	233	< 0.001
For TIME slope, π_1					
INTRCPT2, β_{10}	-2.018598	0.283545	-7.119	233	< 0.001
For HEALTH slope,	π_2				
INTRCPT2, β_{20}	-2.644731	0.415843	-6.360	233	< 0.001

Final estimation of variance components

Random Effect	Standard Deviation	Variance Component	<i>d.f.</i>	χ^2	<i>p</i> -value
INTRCPT1, r_0	6.89480	47.53823	233	598.16785	< 0.001
TIME slope, r_1	1.05317	1.10917	233	243.98745	0.297
level-1, e	6.01314	36.15791			

Statistics for current covariance components model Deviance = 4851.497101

Write Up

(These results are from the SPSS output—I am using these results simply to show an example in which the covariate has a random slope, but knowing that R and HLM had difficulties estimating the model, raises concerns about their validity. After seeing an error in HLM or R, I would rerun the model, first eliminating the random slopes for health. Diagnostics plots would also advisable to explore whether residuals were nonnormal or heteroscedastic, or whether nonlinear effects might be present).

A growth curve model with a time-varying covariate was tested to investigate the change in depression over time controlling changes in health over time. Random slopes for the time and the health variable were estimated in the model. The average depression score at baseline was 14.56 and these values varied significantly across participants, $\tau_0^2 = 58.68$, z = 5.79, p < .001. There was a significant decline in depression over time after controlling for changes in health, $\gamma_{10} = -2.05$, t = -7.23, p < .001, which indicates that depression scores decreased by approximately two points every six months. Growth curves did not vary significantly, $\tau_1^2 = 1.87$, z = .75, p = .23, however, suggesting that widows declined in depression at the similar rates. Health was significant related to depression at each time point, $\gamma_{20} = -2.44$, t = 6.31, p < .001, indicating that those in better health had lower depression scores. The relationship between health and depression also varied across participants, $\tau_2^2 = 5.76$, z = 2.02, p = .02.

Newsom Psy 526/626 Multilevel Regression, Spring 2024