Comparison of Notation for Growth Curve Models

Each model below is the same basic growth curve model with no covariates and a random slope expressed in the notation used in our various reading sources.

Snijders & Bosker (2012) Notation

Separate Equations:

(level 1) $Y_{ii} = \beta_{0i} + \beta_{1i}(t - t_0) + R_{ii}$

(level 2)
$$\begin{aligned} \beta_{0i} &= \gamma_{00} + U_{0i} \\ \beta_{1i} &= \gamma_{10} + U_{1i} \end{aligned}$$

Single Equation

$$Y_{ti} = \gamma_{00} + \gamma_{10} \left(t - t_0 \right) + U_{0i} + U_{1i} \left(t - t_0 \right) + R_{ti}$$

The subscript $_{ti}$ is used to designate time point, t, nested within individual, i. Instead of using an x or other variable, the time predictor is expressed as t- t_0 to indicate that the first time point is coded as 0 and so that the intercept represents baseline scores on the dependent variable. For example if t = 1, 2, 3, 4, then t- $t_0 = 0, 1, 2, 3$. The value of the intercept is then equal to the value of Y when t- t_0 is equal to 0, leading to an interpretation of the intercept as the average baseline value of the dependent variable.

Raudenbush & Bryk (2002) Notation

Separate Equations:

(level 1)
$$Y_{ti} = \pi_{0i} + \pi_{1i}a_{ti} + e_{ti}$$

(level 2) $\frac{\pi_{0i} = \beta_{00} + r_{0i}}{\pi_{1i} = \beta_{10} + r_{1i}}$

Single Equation

$$Y_{ti} = \beta_{00} + \beta_{10}a_{ti} + r_{0i} + r_{1i}a_{ti} + e_{ti}$$

The subscript $_{ti}$ is used to designate time point, t, nested within individual, i. Instead of using t- t_{θ} for the time variable as Snijders and Bosker do, a new variable letter, a_{ti} is used to represent the special time predictor. a was picked for age, but can represent any time predictor. The rationale for using π for the regression coefficients at level 1 and β for the regression coefficients at level 2 is to keep the β s associated with the person level and to allow for γ s to be used for a group level should there be a nested data structure also. A summation sign, Σ , is often used for a general formula to indicate that any number of other predictors (terms) can be added to the equation.

Singer & Willett (2003) Notation

Separate Equations:
(level 1)
$$Y_{ij} = \pi_{0i} + \pi_{1i} TIME_{ij} + \varepsilon_{ij}$$

(level 2)
$$\begin{aligned} \pi_{0i} &= \gamma_{00} + \zeta_{0i} \\ \pi_{1i} &= \gamma_{10} + \zeta_{1i} \end{aligned}$$

Single Equation

$$Y_{ij} = \gamma_{00} + \gamma_{10} TIME_{ij} + \zeta_{0i} + \zeta_{1i} TIME_{ij} + \varepsilon_{ij}$$

The subscript *ij* used by Singer and Willett differs from the other two notations, because *j* represents the time point and *i* represents the person. Thus, *ij* can be read as "person *i* at time point *j*." ε (epsilon) is used for the level-1 error term and ζ (zeta) is used for the level-2 error term.

Hox (2010; Hox, Moerbeek, & van de Schoot, 2018) Notation

Separate Equations:

(level 1) $Y_{ti} = \pi_{0i} + \pi_{1i}T_{ti} + e_{ti}$

(level 2)
$$\begin{array}{l} \pi_{_{0i}}=\beta_{_{00}}+u_{_{0i}} \\ \pi_{_{1i}}=\beta_{_{10}}+u_{_{1i}} \end{array}$$

Single Equation

$$Y_{ti} = \beta_{00} + \beta_{10}T_{ti} + u_{0i} + u_{1i}T_{ti} + e_{ti}$$

The subscript *i* is used to designate time point, *t*, nested within individual, *i*. The time predictor is T_{ti} . Compared with the Raudenbush and Bryk notation, the π and the β are switched, so that the π represents the level-1 coefficient and β represents the level-2 coefficient.