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Random Effects Likelihood RatioTest Examples 
The result of maximum likelihood estimation is a -2 log likelihood value (Deviance), which is a summary 
of the fit of the observed to the expected values. These values can be used for comparing different 
models that are nested (see the "Significance Testing in Multilevel Regression" handout). The difference 
in likelihood values can be evaluated against the chi-square distribution for significance—the likelihood 
ratio test. If the models differ only in the random effects, REML estimation is fine. If the fixed effects differ 
at all, then full ML should be used. Each likelihood ratio test is a test of whether one or more parameters 
(whichever parameters differ between the two models) are significantly different from zero. 
 
SPSS 
To illustrate the likelihood ratio test approach, I use the HSB data to compare the model with SES as a 
level-1 predictor (uncentered) with varying slopes.1 
 
Test of Slope Variance using the Wald Test 

 
The UN() notation refers to the rows and columns of the variance-covariance matrix.  The 
UN(1,1,) row refers to the intercept variance, because j0  is the first parameter and an element 
with the same row and column number refers to the variance, called 2

0  in the text.  The UN(2,2) 

row refers to the second row and second column of the variance-covariance matrix, so if j0 is 
the first row and first column and j1 is the second row and second column, then UN(2,2) refers 
to the variance of the j1 slope, known as 2

1 .  UN(2,1) then refers to the covariance between the 

intercept j0  and the slope j1, known as 01. So, the table indicates that the intercept variance is 
significant, even after halving the p-value (one-tailed p-value = .000/2 = <.01 at least), the 
variance of the slope is significant with a one-tailed test (.079/2 = .0395). The p-value for the 
covariance between the intercept and slope p = .606 (two-tailed test that is not halved) is not 
significant. 
 
Likelihood Ratio Test of the Just the Covariance  
Just as one illustration I first conduct a likelihood ratio test of the covariance between intercept and slope. 
It may be of interest, particularly with low power due to a small number of groups, to examine the 
likelihood ratio test instead of the Wald test, which is automatically provided in the "Estimates of 
Covariance Parameters" box when COVTYPE(UN) is used on the RANDOM subcommand. 
 
To conduct the likelihood ratio test of the covariance, I first tested the original model with the random 
effect for slope and the intercept-slope covariance estimated because COVTYPE(UN) was used 
 
MIXED mathach WITH ses 
  /METHOD = REML  
  /PRINT = SOLUTION TESTCOV  
  /FIXED =  ses | SSTYPE(3)  
  /RANDOM = INTERCEPT ses  | SUBJECT(schoolid) COVTYPE(UN). 
 
I omit most of the results, which were reported in the “Random Slopes Example: SPSS, R, and 
HLM.” We just need the -2 log likelihood value (Deviance) from that output.  

 
1 I do not generally recommend uncentered predictors in most circumstances, but SES in the HSB data set was pre-standardized so it has a 
mean at or near zero.  
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The model is then retested using a different specification on the RANDOM subcommand COVTYPE(VC), 
which stands for variance components and which requests a diagonal matrix assuming covariance 
between intercept and slope is equal to 0 (not a reasonable assumption usually). 
 
MIXED mathach WITH ses 
  /CRITERIA=MXITER(1000) SCORING(1) 
  /METHOD = REML  
  /PRINT = SOLUTION TESTCOV HISTORY 
  /FIXED =  ses | SSTYPE(3)  
  /RANDOM = INTERCEPT  ses | SUBJECT(schoolid) COVTYPE(VC). 

 
In the results, notice that there is no covariance estimate—the UN(2,1) value is absent. 
 

 
 
The likelihood ratio test subtracts the -2 log likelihood value for the previous model with the covariance 
estimated (same as D1 below), from this more restricted model 46640.398 with the covariance not 
estimated (set to 0), 46640.663. The resulting chi-square test (traditional two-tailed) can be compared to 
a standard chi-square table. The difference in this case is not significant, 2(1) = .265, ns, and is the 
same conclusion the Wald test gave. 
 

Likelihood Ratio Test of the Slope Variance and Intercept-Slope Covariance Together 
To illustrate the mixture distribution ("chi-bar") test when the test involves a variance and a covariance, 
which should be a mixture of a one-tailed and a two-tailed test respectively, I compare a model with and 
without the random effect requested (SES is not included on the random line). This restricts the variance 
for the slopes to 0 but also the covariance, so two parameters are different.  
 
D0 model in which slope is non-varying  
MIXED mathach WITH ses 
  /METHOD = REML  
  /PRINT = SOLUTION TESTCOV  
  /FIXED =  ses | SSTYPE(3)  
  /RANDOM = INTERCEPT   | SUBJECT(schoolid) 
COVTYPE(UN).  
 

D1 model in which slope is allowed to vary  
MIXED mathach WITH ses 
  /METHOD = REML  
  /PRINT = SOLUTION TESTCOV  
  /FIXED =  ses | SSTYPE(3)  
  /RANDOM = INTERCEPT ses  | SUBJECT(schoolid) 
COVTYPE(UN) 
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Because p-values are halved for variances but not for covariances a mixture of the two p-values is 
needed. I did the adjustments using a spreadsheet (available on the class website). 

0 1 46645.163 46640.398 4.765D D     This value does not exceed the 5.14 chi-square cutoff value from 
the mixture ("chi-bar") chi-square critical value in Snijders & Bosker (2012, p. 99), so the test of the slope 
and covariance between slope and intercept, tested together, is not significant.  
 
Likelihood Ratio Test of Just the Variance 
We could further do a comparison of the model with the covariance restricted (as in the first model 
above) to a model without a random slope.  This test is testing the same hypothesis as the covariance 
test for UN(2,2) printed in our original random slope model.  
 
I just need to test a model with no random slope (same as in the handout “ANCOVA Example (One 
Level-1 Predictor Assuming Homogeneous Slopes): SPSS, R, and HLM”) and using REML estimation 
(because the only difference is a random effect). The model we will compare against has already been 
conducted above where I restricted the covariance to 0. For this second model, we obtain:  
 
MIXED mathach WITH ses 
  /CRITERIA=MXITER(1000) SCORING(1) 
  /METHOD = REML  
  /PRINT = SOLUTION TESTCOV HISTORY 
  /FIXED =  ses | SSTYPE(3)  
  /RANDOM = INTERCEPT  | SUBJECT(schoolid) COVTYPE(UN). 
 

 
 

The difference between this -2 Restricted Log Likelihood, 46645.169, and the model obtained with a 
random slope and no covariance, 46640.663, is 4.506, which for a 1-df chi-square test (one-sided) with a 
critical value of 2.706, is significant.  I should mention that I am wary of this particular test because the 
comparison model with no covariance is likely to be unreasonable and may have trouble with 
convergence or reflects an incorrect model.  
 

R 
Likelihood Ratio Tests 
> library(lme4) 
> library(lmerTest)  #lmerTest generates Satterthwaitte df with summary function 
> model1 <- lmer(mathach ~ ses + (ses|schoolid), data = mydata, REML = TRUE) 
> summary(model1) 
Linear mixed model fit by REML  
t-tests use  Satterthwaite approximations to degrees of freedom ['lmerMod'] 
Formula: mathach ~ ses + (ses | schoolid) 
   Data: mydata 
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REML criterion at convergence: 46640.4 
 
Scaled residuals:  
     Min       1Q   Median       3Q      Max  
-3.12272 -0.73046  0.02144  0.75610  2.94356  
 
Random effects: 
 Groups   Name        Variance Std.Dev. Corr  
 schoolid (Intercept)  4.8286  2.1974         
          ses          0.4129  0.6426   -0.11 
 Residual             36.8302  6.0688         
Number of obs: 7185, groups:  schoolid, 160 
 
Fixed effects: 
            Estimate Std. Error       df t value            Pr(>|t|) 
(Intercept)  12.6650     0.1898 145.5500   66.71 <0.0000000000000002 
ses           2.3938     0.1181 157.5300   20.27 <0.0000000000000002 
 
Correlation of Fixed Effects: 
    (Intr) 
ses -0.045 
  

The anova function from the lmerTest package can be used to perform a likelihood ratio test to 
compare two nested models. Note that it retests the models using full maximum likelihood, which is not 
necessary when just random effects differ but should be ok with larger sample sizes.    

> library(lmerTest) 
> #sets the covariance equal 0 (diagonal matrix of random effects) 
> model2 <- lmer (mathach ~ ses + (1|schoolid) + (0+ses|schoolid), data=mydata) 
> summary(model2) 
 
Random effects: 
 Groups     Name        Variance Std.Dev. 
 schoolid   (Intercept)  4.853   2.2029   
 schoolid.1 ses          0.424   0.6511   
 Residual               36.822   6.0681   
Number of obs: 7185, groups:  schoolid, 160 
 
> #conducts a LR comparison of the unconstrained and constrained models 
> anova(model,model2) 
refitting model(s) with ML (instead of REML) 
Data: mydata 
Models: 
model2: mathach ~ ses + (1 | schoolid) + (0 + ses | schoolid) 
model: mathach ~ ses + (ses | schoolid) 
       Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq) 
model2  5 46647 46681 -23318    46637                          
model   6 46648 46690 -23318    46636 0.2762      1     0.5992  
 
Partial Least Squares Profile Likelihood Approach for Random Effects 
The profile likelihood confidence intervals (Bates et al., 2015) can be obtained with the confint() func-
tion to test any of the random effects.  The method uses asymmetric CIs, so 95% level (default) can be 
used for any of them.   
 
> confint(model1) 
Computing profile confidence intervals ... 
                  2.5 %     97.5 % 
.sig01       1.91159331  2.5112989 
.sig02      -1.00000000  0.3078580 
.sig03       0.08487641  0.9666694 
.sigma       5.96867353  6.1719565 
(Intercept) 12.28852890 13.0406703 
ses          2.15925014  2.6317003 

 
Likelihood Ratio Test of the Slope Variance and Intercept-Slope Covariance Together 
The mixture (“chi-bar”) chi-square can be obtained with the rand() function has the same result and 
conclusion as the manual method I used with SPSS above. 
 
> library(lmerTest) 
> #rand function reports LR comparison to intercept only model using mixture chi-square  
> rand(model1) 
Analysis of Random effects Table: 
             Chi.sq Chi.DF p.value 
ses:schoolid   4.77      2    0.09 
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HLM 
I just conducted one comparison, the model with and without a random slope, both with the covariance 
constrained to be zero. To test the first model with no covariance between intercept and slope, under 
Other Settings, choose Estimation Settings and check the box Diagonalized Tau to set the correlation 
between intercept and slope to 0. REML estimation is fine because the two models will only differ in the 
random effect. (Not needed here, but for nested models involving any fixed effects, go to Estimation 
Settings, check the Full Maximum Likelihood button). Run that model allowing the slope to vary across 
schools (uj is estimated). This part of the printout shows no covariance is estimated: 
τ 
INTRCPT1,β0      4.85319    0.00000 
SES,β1      0.00000    0.42574 
 
τ (as correlations) 
INTRCPT1,β0      1.000    0.000
SES,β1      0.000    1.000

Statistics for current covariance components model 

Deviance = 46638.825210 
Number of estimated parameters = 3 

Then run a second model but first go to Other Settings then Hypothesis Testing and then put in the value 
of the deviance (46638.825210) from the first model and the number of parameters from the first model 
(which was 3).  

 

Hit ok, then rerun the model with the uj not estimated. The nested test is printed at the bottom. At the 
bottom of the output, you will find the result of the likelihood ratio test.  
Statistics for current covariance components model 
Deviance = 46643.331427 
Number of estimated parameters = 2 
 
    Variance-Covariance components test 

     χ2 statistic = 4.50622 
     Degrees of freedom = 1 
     p-value = 0.032 

 
The difference is 4.50622 and is significant. This value and conclusion match what was obtained for the 
same difference test manually computed from SPSS values.  
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