ANCOVA Example (One Level-1 Predictor Assuming Homogeneous Slopes)

The example below uses data from the High School and Beyond data set (HSB). The model tests differences across schools in math achievement, controlling for student SES. This model is equivalent to a random effects ANCOVA assuming homogeneous slopes for the covariate.

SPSS

```
MIXED mathach WITH ses

/METHOD = REML

/PRINT = SOLUTION TESTCOV

/FIXED = ses | SSTYPE(3)

/RANDOM = INTERCEPT | SUBJECT(schoolid) COVTYPE(UN).
```

Fixed Effects

Type III Tests of Fixed Effects a

Source	Numerator df	Denominator df	F	Sig.
Intercept	1	148.330	4534.089	<.001
ses	1	6838.142	511.174	<.001

a. Dependent Variable: mathach.

Estimates of Fixed Effects a

						95% Confidence Interval	
Parameter	Estimate	Std. Error	df	t	Sig.	Lower Bound	Upper Bound
Intercept	12.657	.188	148.330	67.336	<.001	12.286	13.029
ses	2.390	.106	6838.142	22.609	<.001	2.183	2.597

a. Dependent Variable: mathach.

Covariance Parameters

Estimates of Covariance Parameters ^a

						95% Confider	ce Interval	4	This p-value should be
Parameter		Estimate	Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound		halved
Residual		37.034	.625	59.218	<.001	35,829	38.281		haved
Intercept [subject = schoolid]	Variance	4.768	.655	7.278	<.001	3.642	6.241		

a. Dependent Variable: mathach.

Remember to **halve the p-value** for the intercept variance test. In this case, half of p < .001 is either p < .0005 or just p < .001.

Or, alternatively retest the model using the subcommand /CRITERIA=CIN(90) but only use the 90% intervals for the intercept variance test.

Estimates of Covariance Parameters ^a

						90% Confidence Interval	
Parameter		Estimate	Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound
Residual		37.034	.625	59.218	<.001	36.020	38.077
Intercept [subject = schoolid]	Variance	4.768	.655	7.278	<.001	3.803	5.977

a. Dependent Variable: mathach.

Newsom Psy 526/626 Multilevel Regression, Spring 2024

R > #random effects ANCOVA model (homogeneous slopes)
> model2 <- lme(mathach ~ ses, random = ~ 1|schoolid, data = mydata, method="REML")</pre> summary(model2) inear mixed o Data: mydata ^TC BIC Linear mixed-effects model fit by REML AIC BIC logLik 46653.17 46680.69 -23322.58 Random effects: Formula: ~1 | schoolid (Intercept) Residual 2.183615 6.085589 StdDev: Fixed effects: mathach ~ ses Value Std.Error DF t-value p-value (Intercept) 12.657480 0.1879851 7024 67.33234 0 ses 2.390196 0.1057191 7024 22.60893 0 Correlation: (Intr) ses 0.003 Standardized Within-Group Residuals: Min 01 Med 03 Max -3.12607345 -0.72720308 0.02188316 0.75771694 2.91911572 Number of Observations: 7185 Number of Groups: 160 > #nlme provides standard deviations of the random effects by default, use VarCorr to obtain variances > VarCorr(model2) schoolid = pdLogChol(1) Variance StdDev (Intercept) 4.768174 2.183615 Residual 37.034399 6.085589 > #obtain_confidence intervals for fixed effects but ignore the random effects CIs (incorrect) > intervals(model2) Approximate 95% confidence intervals Fixed effects: lowerest.upper(Intercept)12.28897312.65748013.025988ses2.1829552.3901962.597437 lower Random Effects: Level: schoolid lower est. upper sd((Intercept)) 1.908434 2.183615 2.498475 within-group standard error: lower est. upper 5.985709 6.085589 6.187137 > #use 90% CI for the intercept variance > #could use intervals(model2,.90,"var-cov") from nlme but variances are standard deviations > #the predict means package and varcomp function will give variances > library(predictmeans)
> varcomp(model2, ci=TRUE, level=.90) lower vcov SE upper schoolid.schoolid.var((Intercept)) 4.768174 0.6337066 3.803334 5.977778 sigma_sq 37.034399 0.6249069 36.019872 38.077500

HLM

Summary of the model specified Step 2 model Level-1 Model $MATHACH_{ij} = \beta_{0j} + \beta_{1j}*(SES_{ij}) + r_{ij}$

Level-2 Model

 $\beta_{0j} = \gamma_{00} + u_{0j}$ $\beta_{1j} = \gamma_{10}$

Mixed Model

 $MATHACH_{ij} = \gamma_{00}$ $+ \gamma_{10} * SES_{ij} + u_{0j} + r_{ij}$

Final Results - Iteration 6 Iterations stopped due to small change in likelihood function

 $\sigma^2 = 37.03440$

τ

INTRCPT1,β₀ 4.76815

Random level-1 coefficient	Reliability estimate	
INTRCPT1, β_0	0.843	
The value of the log-likelihood	function at iteration 6 =	-2.332167E+04

Final estimation of fixed effects:

Fixed Effect	Coefficient	Standard error	<i>t</i> -ratio	Approx. <i>d.f.</i>	<i>p</i> -value
For INTRCPT1, β_0					
INTRCPT2, γ_{00}	12.657481	0.187984	67.333	159	< 0.001
For SES slope, β_1					
INTRCPT2, γ_{10}	2.390199	0.105719	22.609	7024	< 0.001

Final estimation of fixed effects (with robust standard errors)

ļ	(with robust stanuar	u errorsj				
	Fixed Effect	Coefficient	Standard error	<i>t</i> -ratio	Approx. <i>d.f.</i>	<i>p</i> -value
	For INTRCPT1, β_0					
	INTRCP12, γ_{00} For SES slope β_{1}	12.657481	0.187330	67.568	159	< 0.001
	INTRCPT2, γ_{10}	2.390199	0.119309	20.034	7024	< 0.001

Final estimation of variance components

Random	Standard	Variance	df	~ ²	<i>p</i> -
Effect	Deviation	Component	u.j.	λ	value
INTRCPT1, u_0	2.18361	4.76815	159	1037.09077	< 0.001
level-1, r	6.08559	37.03440			

Statistics for current covariance components model

Deviance = 46643.331427

Number of estimated parameters = 2

A second model was tested to examine the variability of math achievement across schools controlling for student socioeconomic status (SES). The slopes representing the relationship between SES and math achievement were nonvarying and assumed to be equal across schools. Results indicated that the adjusted mean for math achievement was 12.66, which represents the math achievement score for a student with average SES.¹ SES was significantly related to math achievement scores (γ_{10} =2.39, SE_{γ} = .19, p < .001),² indicating that math achievement scores increased by over two points with each standard deviation increase in SES. Schools varied significantly in math achievement scores after controlling for SES, τ_0^2 = 4.77, $\chi^2(159)$ = 1037.09, p < .001. (Values and significance test were taken from the HLM output and may differ slightly from the SPSS and R output values).

¹ The SES variable in the HSB data set is standardized and so the intercept is defined as the predicted value for math achievement when the predictor, SES is at the mean (here when SES equals 0, given the standardized scaling). We will discuss predictor scaling in greater detail later. ² I usually recommend use of the robust standard errors for the fixed effects, so I report the robust value here. In HLM, the nonrobust value is .12 and, in SPSS and R, it is .11. We will discuss this later in the course.