
Newsom  1 
USP 655 SEM 
Winter 2010 

Some Clarifications and Recommendations on Fit Indices 
 
Tanaka (1993), Maruyama (1998), and others distinguish between several types of fit indices:  
absolute fit indices, relative fit indices, parsimony fit indices, and those based on the 
noncentrality parameter. 
 
Absolute Fit Indices (χ2, GFI, AGFI, Hoelter’s CN, AIC, BIC, ECVI, RMR, SRMR)  
 
Absolute fit indices do not use an alternative model as a base for comparison.  They are 
simply derived from the fit of the obtained and implied covariance matrices and the ML 
minimization function.  Chi-square (χ2, sometimes referred to as T ) is the original fit index for 
structural models because it is derived directly from the fit function [fML(N-1)]. Because chi-
square is the original fit index and because it is the basis for most other fit indices, it is 
routinely reported in all SEM results sections. 
 
In practice, however, chi-square is not considered to be a very useful fit index by most 
researchers, because it is affected by the following factors (1) sample size—larger samples 
produce larger chi-squares that are significant even with very small discrepancies between 
implied and obtained covariance matrices.  On the other hand, small samples may be too 
likely to accept poor models (Type II error). Based on my experience, it is difficult to get a 
nonsignificant chi-square when samples sizes are much over 200 or so. (2) model size also 
has an increasing effect on chi-square values.  Models with more variables tend to have 
larger chi-squares.  (3)  Chi-square is affected by the distribution of variables.  Highly skewed 
and kurtotic variables increase chi-square values. This has to do with the multivariate 
normality assumption that we will discuss later in the class.  (4) There may be some lack of fit 
because of omitted variables.  Omission of variables may make it difficult to reproduce the 
correlation (or covariance) matrix perfectly. 
 
There are several other indices that fall into the category of absolute indices, including the 
Goodness-of-fit index (GFI, also known as gamma-hat or γ̂ ), the adjusted goodness of fit 
index (AGFI), χ2/df ratio, Hoelter’s CN (“critical N”), Akaike’s Information Criterion (AIC), the 
Bayesian Information Criterion (BIC), the Expected Cross-validation Index (ECVI), the root 
mean square residual (RMR), and the standardized root mean square residual (SRMR).  
Most of these indices, with the possible exception of the SRMR, have similar problems to 
those of the chi-square, because they are simple transformations of chi-square.  As one 
example, the AIC (as given by Tanaka, 1993) is 2 2( )pχ + , where p is the number of free 
parameters (the number counted in calculating df). 
 
Relative Fit Indices (IFI, TLI, NFI) 
Relative fit indices compare a chi-square for the model tested to one from a so-called null 
model (also called a “baseline” model or “independence” model).  The null model is a model 
tested that specifies that all measured variables are uncorrelated (there are no latent 
variables).  The null model should always have a very large chi-square (poor fit).  Although 
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other baseline models could be used, this is not often seen in practice.1  There are several 
relative fit indices (which are not explicitly designed to be provide penalties for less 
parsimonious models), including Bollen’s Incremental Fit Index (IFI, also called BL89 or Δ2), 
the Tucker-Lewis Index [TLI, Bentler-Bonett Nonnormed Fit Index (NNFI or BBNFI), or ρ2], 
and the Bentler-Bonett Normed Fit Index (NFI).  Most of these fit indices are computed by 
using ratios of the model chi-square and the null model chi-square and dfs for the models.  All 
of them have values that range between approximately 0 and 1.0.  Some of these indices are 
“normed” so that their values cannot be below 0 or above 1 (e.g., NFI, CFI described below).  
Others are considered “nonnormed” because, on occasion, they may be larger than 1 or 
slightly below 0 (e.g., TLI, IFI).  In the past, these indexes have generally been used with a 
conventional cutoff in which values larger than .90 are considered good fitting models, but 
there seems to be growing consensus that this value should be increased to approximately 
.95 (based largely on Hu & Bentler, 1999). 
 
Parsimonious Fit Indices (PGFI, PNFI, PNFI2, PCFI) 
These fit indices are relative fit indices that are adjustments to most of the ones above.  The 
adjustments are to penalize models that are less parsimonious, so that simpler theoretical 
processes are favored over more complex ones.  The more complex the model, the lower the 
fit index.  Parsimonious fit indices include PGFI (based on the GFI), PNFI (based on the NFI), 
PNFI2 (based on Bollen’s IFI), PCFI (based on the CFI mentioned below).  Mulaik et al. 
(1989) developed a number of these.  Although many researchers believe that parsimony 
adjustments are important, there is some debate about whether or not they are appropriate.  
My own perspective is that researchers should evaluate model fit independent of parsimony 
considerations, but evaluate alternative theories favoring parsimony. With that approach, we 
would not penalize models for having more parameters, but if simpler alternative models 
seem to be as good, we might want to favor the simpler model.   
 
Noncentrality-based Indices (RMSEA, CFI, RNI, CI) 
The concept of the noncentrality parameter is a somewhat difficult one.  The rationale for the 
noncentrality parameter is that our usual chi-square fit is based on a test that the null 
hypothesis is true (Χ2 = 0). This gives a distribution of the “central” chi-square.  Because we 
are hoping not to reject the null hypothesis in structural modeling, it can be argued that we 
should be testing to reject the alternative hypothesis (Ha).  A test that rejected the alternative 
hypothesis, Ha, would make statistical decisions using the “noncentral” chi-square distribution 
created under the case when Ha is assumed to be true in the population (i.e., an incorrect 
model in the population).  This approach to model fit uses a chi-square equal to the df for the 
model as having a perfect fit (as opposed to chi-square equal to 0). Thus, the noncentrality 
parameter estimate is calculated by subtracting the df of the model from the chi-square 
( 2 dfχ − ).  Usually this value is adjusted for sample size and referred to as the rescaled 
noncentrality parameter: 
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1   The uncorrelated null model is not fully universal. In fact, Mplus has introduced an alternative null model 
under some circumstances (correlations among non-latent exogenous variables are included).  However, past 
application and statistical work has been based on the uncorrelated null model approximately 99% of the time. 



Newsom  3 
USP 655 SEM 
Winter 2010 

A population version is often referred to as δ and is computed by dividing by N rather than N-
1.  Noncentrality-based indices include the Root Mean Square Error of Approximation 
(RMSEA)—not to be confused with RMR or SRMR, Bentler’s Comparative Fit Index (CFI), 
McDonald and Marsh’s Relative Noncentrality Index (RNI), and McDonald’s Centrality Index 
(CI).  Because the noncentrality parameter is simply a function of chi-square, df, and N, 
several of the formulas for the relative fit indices described above can be algebraically 
manipulated to include the noncentrality parameter.  For example the TLI can also be 
presented as: 

( ) ( )0 0

0 0

/ /
/

model modeld df d df
TLI

d df
−

=  

 
Where dmodel and dfmodel are the noncentrality parameter and the degrees of freedom for the 
model tested and d0 and df0 are the noncentrality parameter and df for the null model.  
Recent work by Raykov (2000, 2005) shows that noncentrality parameter sample estimates 
are biased and that this problem may affect fit indices computed based on noncentrality.   
 
Sample Size Independence 
Many of the relative fit indices (and the noncentrality fit indices) are affected by sample size, 
so that larger samples are seen as better fitting (i.e., have a higher fit index value). Bollen 
(1990) made a very useful distinction between fit indices that can be shown to explicitly 
include N in their calculation and those that are dependent on sample size empirically. That 
is, even though a fit index may not include N in the formula, or even attempt to adjust for it, 
does not mean that the fit index will really turn out to be independent of sample size.  He also 
showed that the TLI and IFI are relatively unaffected by sample size (see also Anderson & 
Gerbing, 1993; Hu & Bentler, 1995; Marsh, Balla, & McDonald, 1988).   
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This is one reason why I tend to favor Bollen’s IFI.  If you are interested in adjusting for 
parsimony, you might consider the Mulaik et al.’s PNFI2 which is a parsimony adjusted 
version of the IFI.  One can make an argument about parsimony adjustment similar to 
Bollen’s argument about sample size. It might be important to differentiate between fit indices 
that are explicitly adjusting for parsimony and ones that are empirically affected by model 
complexity.  The TLI is a example of an index that adjusts for parsimony, even though that 
was not its original intent. 
 
Recommendations 
Every researcher and every statistician seems to have a favorite index or set of indices.  You 
should be prepared for reviewers to suggest the addition of one or two of their favorite 
indices, but it would not be fair to yourself or others to pick the index that is most optimistic 
about the fit of your model.  In recent years, there has been concern that the recommended 
cutoff values for relative fit indices of .90 are too low and that higher values, such as .95 
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should be used.  Hu and Bentler (1999) empirically examine various cutoffs for many of these 
measures, and their data suggest that to minimize Type I and Type II errors under various 
conditions, one should use a combination of one of the above relative fit indexes and the 
SRMR (good models < .08) or the RMSEA (good models < .06).  These values should not be 
written in stone (in fact there have been some recent concerns raised; e.g., Fan & Sivo, 2005; 
Marsh et al., 2004) but I believe this is useful work and hope it will helpful for establishing a 
more concrete basis for conventional cutoff values in the future.  Based on the IFI’s 
independence of sample size and the data from Hu and Bentler, I usually prefer to report the 
IFI in combination with the SRMR in my work.  Most importantly, researchers should decide a 
priori about fit criteria, state those criteria in their reports, and consider reporting more than 
one fit index (Jackson, Gillaspy, & Purc-Stephenson, 2009). 
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