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Measures of Association for Contingency Tables 
 
The Pearson chi-squared statistic and related significance tests provide only part of the story of 
contingency table results.  Much more can be gleaned from contingency tables than just whether the 
results are different from what would be expected due to chance (Kline, 2013).  For many data sets, the 
sample size will be large enough that even small departures from expected frequencies will be 
significant. And, for other data sets, we may have low power to detect significance. We therefore need to 
know more about the strength of the magnitude of the difference between the groups or the strength of 
the relationship between the two variables. 
 
Phi 
The most common measure of magnitude of effect for two binary variables is the phi coefficient.  Phi can 
take on values between -1.0 and 1.0, with 0.0 representing complete independence and -1.0 or 1.0 
representing a perfect association. In probability distribution terms, the joint probabilities for the cells will 
be equal to the product of their respective marginal probabilities, ( ) ( ) ( )ij i jP n P n P n+ += , only if the two 
variables are independent.  The formula for phi is often given in terms of a shortcut notation for the 
frequencies in the four cells, called the fourfold table.  
 

Azen and Walker Notation   Fourfold table notation  
n11 n12 
n21 n22 

 

A B 
C D 

 

 
The equation for computing phi is a fairly simple function of the cell frequencies, with a cross-
multiplication and subtraction of the two sets of diagonal cells in the numerator.1 
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As you might have expected at this point, the phi coefficient is rather like the correlation coefficient. In 
fact, it is exactly equal to Pearson’s correlation coefficient.  The significance test of the correlation 
coefficient differs slightly from the test of the Pearson χ2 test, however. The t distribution is used for 
testing the correlation coefficient, whereas the χ2 distribution is the square of the z distribution. Of course, 
the t and z distributions become nearly identical as n > 120. Though chi-squared is often viewed as a test 
of homogeneity (group differences) and phi as a measure of association, they are really asking the same 
question.  It is also a simple matter to convert from φ to χ2, where 2 2nχ φ=  and 2 / nφ χ=  . Just as with 
the correlation coefficient, squaring phi, φ2, gives the proportion of shared variance between the two 
binary variables.  Cramer’s V is the generalization of phi for I × J tables, also simply calculated from chi-
square, using the number of levels of whichever is the smaller dimension in the denominator. 
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Contingency Coefficient 
The contingency coefficient, which is often printed in software output but rarely reported by authors, was 
also suggested by Pearson as a measure of association.  The contingency coefficient is intended to 
estimate the association between two underlying normal variables and can be used for any I × J table.   
 

                                                           
1 The phi coefficient may be represented by the capital Greek letter phi (“fee”), Φ, or the lower case, φ. Here, we will represent the sample 
estimate with a lower case and save the upper case for the population value. 
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Risk and Relative Risk 
The concept of risk is often used in health research. For example, we may be interested in the risk of 
coronary heart disease (CHD) for men over 65. If 21 men out of a sample of 100 have heart disease, 
then the risk is 21/100 = .21. In the context of contingency table analysis, risk involves marginal 
frequencies of just one variable, which could be more generally described as pi+ = ni+/n++ (we could also 
use columns if desired).  The risk difference could be used to compare the risk of two groups. If men 
have a .21 risk and women have an .11 risk, then the risk difference is simply .21 -.11 = .10. The two risks 
can also be compared in the risk ratio or relative risk, which is RR = (n2+/n++)/(n1+/n++) = p2+/p1+. For the 
hypothetical example below,2 the risk ratio of CHD for men to women is .21/.11 = 1.91.  
 

Hypothetical example of CHD in a sample men and women over 65 
 

 No CHD CHD Total 
Women 178 22 200 
Men 79 21 100 
    

 
In this example, we might say being male is the presence of a risk for CHD. In general, the relative risk 
finds the probability of occurrence of the disease when the risk is present compared with when the risk is 
absent.  
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If the relative risk is 1.0, then the probability of occurrence of the disease is the same whether the risk 
factor is present or absent. But because the RR is 1.91, the probability of CHD is greater for men than 
women (almost double). Note that we could also frame the question in terms of the relative of risk of 
women to men, which would be .11/.21 = .524, which indicates women have about half the probability of 
CHD as men.  
 
Standard errors, significance tests, or confidence limits can be computed for risk ratios.  The confidence 
limits for the risk ratio are best stated in terms of the natural log of the risk ratio, ( ) ( ) ( )( )lnln 1.96 RRRR SE± , 
where 
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Odds Ratio 
Another way to compare the likelihood of the occurrence of an event between two groups is the odds 
ratio, which is more widely used outside of health and clinical research.  The odds of an event occurring 
is the probability of it happening relative to the probability of it not happening. So, in the above example, 
the odds for men having CHD relative to not having CHD is 21/79 = .266. That is, men have .266 (about 
one-quarter) the odds of having CHD relative to not having CHD. The odds by itself is not particularly 
useful in most circumstances, because we usually want to compare the odds of an event for one group 
compared with another, which involves two variables rather than just one.  The odds ratio is the ratio of 
odds of the event occurring in one group to the odds of the event occurring in the other group. 

                                                           
2 These numbers are not entirely arbitrary, as they are based on rates of CHD found in an American Heart Association fact sheet, 
https://www.heart.org/idc/groups/heart-public/@wcm/@sop/@smd/documents/downloadable/ucm_319574.pdf 

https://www.heart.org/idc/groups/heart-public/@wcm/@sop/@smd/documents/downloadable/ucm_319574.pdf


Newsom   
Psy 525/625 Categorical Data Analysis, Spring 2021   3 
 
 

2 21 22 11 22

1 11 12 21 12

/
/

odds n n n nOR
odds n n n n

= = =      

 
The last equation on the right is a quick way to compute the odds ratio by cross-multiplying the two 
diagonals and dividing. In the fourfold notation, the odds ratio is AD/CB.  For the CHD result, the odds of 
men having CHD relative to women having CHD is (21/79)/(22/178) = 2.15, which means that men have 
more than twice the odds of having CHD as women. An odds ratio of 1.0 means that the odds are equal 
in the two groups (i.e., there is no relationship between sex and CHD).  A positive relationship between 
the two variables corresponds to odds ratio greater than 1.0 and a negative relationship corresponds to 
odds ratio less than 1.0. Be careful with interpretation of odds, however.  Odds less than 1 should not be 
interpreted as % chance less of (decrease in) the event occurring. If the odds are .25, it is not a .75 
reduction in probability of the events occurrence. It is instead that the second group has four times less 
the odds of the event occurring, because, if the two groups were switched, the odds ratio would be 1/.25 
= 4.0 instead. 
 
The difference between the risk ratio (relative risk) and the odds ratio can be difficult to grasp.  They are 
different, so do not use the term “risk” when reporting the odds ratio. The risk ratio is asymmetric in that it 
assumes that the risk precedes the disease causally, whereas the odds ratio does not make the 
assumption of direction (the rows and columns could be switched and the result would be the same). The 
odds ratio is also directly tied to logistic regression coefficients (as we will see later, OR = eβ). 
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For extreme values in which the probability of the event is near zero for both groups, the risk ratio and 
odds ratio will be similar. When the probability is not near zero, the odds ratio will tend indicate a stronger 
relationship between the variables (farther away from the value of 1.0 than the risk ratio). Standard errors 
can be computed for odds ratios for significance testing or confidence limits, but we will save this topic 
for later when we discuss logistic regression. 
 
Sensitivity and Specificity 
Sensitivity and specificity are often useful for clinical applications, such as for describing the accuracy of 
a diagnosis from a test or examination. Sensitivity represents the probability that a test indicates a patient 
has a disease (e.g., coronavirus) when the patient truly does have the virus. Specificity then is when the 
test indicates the patient does not have the disease when the patient truly does not have it.  Sensitivity 
corresponds to the concept of true positive and specificity corresponds to the concept of a true negative. 
Sensitivity and specificity involve the correct diagnoses, and the incorrect diagnoses can be classified as 
false positives (the test indicates the patient has the disease when he/she does not, or 1 – specificity) or 
false negatives (failing to diagnose the condition when it is really present, or 1 - sensitivity). Using our 
fourfold table notation, the table below presents the true state of affairs compared to the test result 
(“case” indicates presence of the disease).  Sensitivity and specificity can be computed with the following 
simple ratios.   

  True 
 
Test 
result 

 Case Non-case 
Case A B 
Non-case C D 

 

( )
ASensitivity

A C
=

+
  

( )
DSpecificity

B D
=

+
  

The base rate is a related and valuable quantity to be aware of, defined here simply as the number of 
true cases (A + C) out of the total (A + B + C +D). Sensitivity and specificity are designed to be 
independent of the base rate, so no matter how rare or common the disease is, sensitivity and specificity 
will give accurate estimates of the test’s utility in diagnosis. Positive predictive value, A/(A+B), and 
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negative predictive value, D/(C+D), are sometimes used to support the accuracy of the test, but these 
two measures are sensitive to base rates, with high base rates resulting in poor utility of negative 
predictive values and low base rates resulting in poor utility of positive predictive values (Glaros & Kline, 
1988).  
 
Cohen’s Kappa 
Kappa (Cohen, 1960) is a measure of agreement, frequently used as a metric of interrater agreement.  
One can simply count the number of times that Rater 1 is in agreement with Rater 2 on a binary measure 
(e.g., observing whether a child exhibits an aggressive behavior or not). The straight percentage 
agreement would tend to overestimate the amount of agreement, because by chance we will expect 
some agreement between the two raters.  Setting up a contingency table with yes/no for one rater on the 
rows and yes/no for the other rater on columns gives the counts or proportions of agreement along the 
main diagonal. Summing the diagonal proportions, 
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p
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The expected proportions are then derived from marginal proportions and represent what is expected by 
chance, 
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Though we can compute a standard error and significance test for kappa, that is typically not of interest, 
because we want to have a level of agreement that is much higher than chance. The standard for a 
“good” or “acceptable” kappa value is arbitrary and it depends on the specific area of research and 
standards of practice.  Fleiss’ (1971) arbitrary guidelines (<.4 is poor, .4-.75 is fair to good, and > .75 is 
excellent) seem to be cited most often.  
 
Software Illustrations 
I present below the SPSS, R, and SAS syntax for generating many of these measures of agreement 
using the Quinnipiac survey, but I include only the output from the SPSS run (some or most of them were 
seen in the previous handout on contingency table tests). 
 
SPSS 
crosstabs /tables=ind by response 
  /cells=count row column total expected 
  /statistics=chisq phi risk cc. 
 

R 
> #measures of assocaion 
> library(vcd) 
> data <- matrix(c(338,363,125,156),ncol=2,byrow=TRUE) 
> assocstats(data) 

 
 
SAS 
proc freq data=one; 
   tables ind*response /chisq agree; 
run;             
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 RR = (n2+/n++)/(n1+/n++) = p2+/p1+= (156/519)/(125/463) = 1.13 
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Sample Write-up 
A chi-square test was used to determine whether there was a significant difference between the 
proportion of Biden and Trump's supporters who are independent.  Results indicated that 30.1% of 
Biden's supporters were independents, whereas 27.0% of Trumps supporters were independents.  This 
difference was not significant, χ2(1) = 1.12, p = .29 The phi coefficient, φ = .03, suggested a small effect 
of approximately .3% shared variance. The relative risk ratio, 1.13, indicated that independents were 
roughly 13% more likely to support Biden than Trump. The odds ratio, 1.16, indicated that the odds of 
supporting Biden if the respondent was an independent were 1.16 the odds of support for Trump if the 
respondent was an independent.  
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