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Logistic Regression 
Logistic regression involves a prediction of a binary outcome. Ordinary least squares (OLS) regression 
assumes a continuous dependent variable Y that is distributed approximately normally in the population. 
Because a binary response variable will not be normally distributed and because the form of the 
relationship to a binary variable will tend to be nonlinear, we need to consider a different type of model. 
 
Predicting the Probability that Y = 1 
For a binary response variable, we can frame the prediction equation in terms of the probability of a 
discrete event occurring.  Usual coding of the response variable is 0 and 1, with the event of interest 
(e.g., “yes” response, occurrence of an aggressive behavior, or heart attack), so that, if X and Y have a 
positive linear relationship, the probability that a person will have a score of Y = 1 will increase as values 
of X increase.  
 
For example, we might try to predict whether or not a couple is divorced based on the age of their 
youngest child. Does the probability of divorce (Y = 1) increase as the youngest child’s age (X) 
increases?  If we take a hypothetical example, in which there were 50 couples studied and the children 
have a range of ages from 0 to 20 years, we could represent this tendency to increase the probability 
that Y = 1 with a graph, grouping child ages into four-year intervals for the purposes of illustration.  
Assuming codes of 0 and 1 for Y, the average value in each four-year period is the same as the 
estimated probability of divorce for that age group.  
    

Child Age Average 
E(Y|X) 

Probability of  
Divorce (Y = 1) 

1-4 0.17 0.17 
5-8 0.27 0.27 

9-12 0.62 0.62 
13-17 0.90 0.90 
17-20 0.96 0.96 

 
The average value within each age group is the expected value for the response at a given value of X, 
which, with a binary variable, is a conditional probability. Graphing these values, we get 
 

  
 
Notice the S-shaped curve.  This is typical when we are plotting the average (or expected) values of Y by 
different values of X whenever there is a positive association between X and Y, assuming a normal and 
equal distributions for X at each value of Y.  As X increases, the probability that Y = 1 increases, but not at 
a consistent rate across values of X.  In other words, when children are older, an increasing larger 
percentage of parents in that child age category divorce, with the increase in divorce probability more 
dramatic for the middle child age groups.       
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The Logistic Equation 
The S-shaped curve is approximated well by a natural log transformation of the probabilities.  In logistic 
regression, a complex formula is required to convert back and forth from the logistic equation to the OLS-
type equation.  The logistic equation is stated in terms of the probability that Y = 1, which is π, and the 
probability that Y = 0, which is 1 - π.  

ln
1

Xπ α β
π

  = + − 
 

 
The natural log transformation of the probabilities is called the logit transformation.  The right hand side 
of the equation, α + βX, is the familiar equation for the regression line.1 The left hand side of the 
equation, the logit ln(π/(1-π), stands in for the predicted value of Y (the observed values are not 
transformed). So, the predicted regression line is curved line, because of the log function.  With 
estimates of the intercept, α, and the slope β, π can be computed from the equation using the 
complementary function for the logarithm, e.  Given a particular value of X, we can calculate the expected 
probability that Y = 1. 
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Because the intercept is the value of Y when X equals 0, the estimate of the probability of Y = 1 when X = 
0 is π = eα/(1+eα).2 
 
Regression Coefficients and Odds Ratios 
Because of the log transformation, our old maxim that β represents "the change in Y with one unit 
change in X" is no longer applicable. The exponential transformations of the regression coefficient, β, 
using eβ  or exp(β) gives us the odds ratio, however, which has a more understandable interpretation of 
the increase in odds for each unit increase in X.  For illustration purposes, I used grouped ages, in which 
case, a unit increase would be from one group to the next. Nearly always, we would rather use a more 
continuous version of age, so a unit increase might be a year. If the odds ratio was 1.22, we would 
expect approximately a 22% increase in the probability of divorce with each increment in child age. We 
need to be a little careful about such interpretations, and realize that we are talking about an average 
percentage increase over all of the range of X. Look back at table of divorce probabilities and the S-
shaped figure above. We do not see the same increment in the probability of divorce from the first child 
age category to the second as we do between the second and the third.  
 
For the special case in which both X and Y are dichotomous, the odds ratio is the probability that Y is 1 
when X is 1 compared to the probability that Y is 1 when X is 0, which we have seen before with the 
analysis of contingency tables. 3   
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Recall that caution is needed in interpreting odds ratios less than 1 (negative relationship) in terms of 
percentages, because 1/1.22 = .82, where you might be tempted to (incorrectly) interpret the value as 
indicating an 18% decrease in the probability of divorce instead of more accurately, a 22% decrease.  
                                                           
1 I follow the notation in the text and use π for the probability even though the observed proportion is being referred to. We also return to using ln 
for the natural log rather than just “log.”  The coefficients α and β are unstandardized, not to be confused with the use of b for standardized 
regression coefficients in ordinary least squares regression. 
2 You may see an alternative but equivalent form of this equation or the equation above used to obtain the proportion from the full model, where 
1 is in the numerator: ( )1/ 1 e α−+ and ( )( )1/ 1 xe α β− ++ , respectively. 

3 The relative risk can be obtained from the odds ratio, because ( ) ( )1 21 / 1RR OR π π+ += − −    if the marginal frequencies are known.     
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Odds ratios require some careful interpretation generally because they are essentially in an 
unstandardized metric. Consider using age as measured by year instead of category in the divorce 
example. We would expect a smaller percentage increase in the probability that Y = 1 for each unit 
increase in X if X is per year rather per four-year interval increase.  If a predictor is measured on a fine-
grained scale, such as dollars for annual income, each increment is miniscule and would not the 
percentage increase in the event to be very large, even if there is a strong magnitude of the relationship 
between the income and the event. To address this, the X variable is sometimes standardized (partially 
standardized coefficient), to obtain the odds increase for each standard deviation increase in X. Fully 
standardized coefficients for logistic regression also can be computed, although their meaning is less 
straightforward than in ordinary least squares regression and there is no universally agreed upon 
approach.  Because software programs do not implement any of them, researchers rarely if ever 
consider reporting them.  A standardized coefficient would have the advantage of interpretation for 
understanding the relative contribution of each predictor.  One can simply calculate the standard 
deviations of X and Y and standardize the logistic regression coefficient using their ratio as is done in 
ordinary least squares regression, β* = βxy(sx/sy).  Menard (2010) suggests using the standard deviation of 
the logit, 2

logits , and the R2 value as defined for ordinary least squares regression [see the Appendix in 
Menard (2011) for the computer steps to compute the standardized coefficient].   

*

2 2
logit /

xs

s R

β
β =   

 
Significance Tests and Confidence Intervals for β and Odds Ratios 
The significance of the regression coefficient (that 0β ≠ in the population) can be tested with the Wald 
ratio, 

 
2
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The caret symbol ^ is used by the text to underscore that the coefficient is a sample estimate. The test 
may be expressed as a z test in some software, where 2Wald z Wald χ= . The standard error 
computation is complex and is derived from the maximum likelihood estimation iterative process.4  
Although the Wald test is the most commonly employed, because it is printed for each coefficient in all 
software packages, it does not perform optimally in all circumstances.  For smaller samples, it tends to 
be too conservative (i.e., Type II errors are more likely—true relationships are not found to be significant) 
for large coefficients (Hauck & Donner, 1977; Jennings, 1986).5 Confidence intervals can also be 
constructed 
 

( ) ˆ
ˆ 1.96 s

β
β ±  

where 1.96 is the z critical value for the normal distribution when α = .05 two-tailed. If the confidence 
interval includes zero, then the coefficient is nonsignificant.  Odds ratios may also be presented with 
confidence limits, in which case, an interval that includes 1.0 is nonsignificant.  
 
Multiple Logistic Regression 
Like ordinary least squares regression, a logistic regression model can include two or more predictors.  
The coefficients and the odds ratios then represent the effect of each independent variable controlling for 
all of the other independent variable(s) in the model. Each coefficient can be tested for significance, but 
we may want to also know whether all of the predictors, taken together, account for a significant amount 

                                                           
4 The standard errors are derived from the information matrix (inverse of the Hessian matrix), computed by the second partial derivatives of the 
loglikelihood of the matrix of parameter estimates. The Newton-Raphson maximization method is the most common.  
5 Hauck and Donner show that this tendency toward Type II errors increases for more extreme differences between groups (i.e., difference in the 
proportion of X = 0 and X = 1 groups) and that the Wald sometimes behaves aberrantly for large effects in small samples. 
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of variance in the dependent variable. Any combination of binary and continuous predictors is possible. 
For nominal variables with more than two categories, a set of g -1 dummy variables need to be 
constructed and entered together to capture the differences among the g groups.  
 
Model Fit 
Maximum likelihood estimation is used to compute logistic model estimates. The iterative process finds 
the minimal discrepancy between the observed response, Y, and the predicted response, Ŷ  (see the 
handout “Maximum Likelihood Estimation”). The resulting summary measure of this discrepancy is the -2 
loglikelihood or -2LL, known as the deviance (McCullagh & Nelder, 1989). The larger the deviance, the 
larger the discrepancy between the observed and expected values. A smaller deviance represents a 
better fit.  The concept is similar to the mean square error (MSE) in ANOVA or regression. Smaller MSE 
indicates better fit and better prediction.  As we add more predictors to the equation, the deviance should 
get smaller, indicating an improvement in fit.  The deviance for the model with one or more predictors is 
compared to a model without any predictors, called the null model or the constant only model, which is a 
model with just the intercept. The now familiar likelihood ratio test is used to compare the deviances of 
the two models (the null model, L0 and the full model, L1).6  
 

   
( ) ( )
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The estimated value of G2 is distributed as a chi-squared value with df equal to the number of predictors 
added to the model.  The loglikelihoods from any two models can be compared as long as the same 
number of cases are used and one of the models has a subset of the predictors used in the other model.  
The special case of the likelihood ratio test in which just one variable is added to the model gives a 
likelihood ratio test of the significance of a single predictor—the same hypothesis tested by the Wald 
ratio described above. The Wald test, typically used for testing a single parameter for significance, also 
can be used to test multiple parameters at once (see Hosmer et al., 2013), although this form of the Wald 
is not readily available in software packages and seems to be seldomly used for this purpose. A third 
alternative, the score test (or Lagrange multiplier test) is based on partial derivatives of the likelihood 
function evaluated at β0 can be used for testing one or more predictors for significance as well. The score 
test is not always printed or available in software packages (and nearly always just for individual 
parameters) and is not reported very often by researchers. The Wald, likelihood ratio, and score tests will 
usually give a very similar result for large sample sizes, and are in fact asymptotically equivalent (Cox & 
Hinkley, 1972), but the likelihood ratio and score test tend to perform better in many situations (e.g., 
Hauck & Donner, 1977).  The Wald test assumes a symmetric confidence interval whereas the likelihood 
ratio does not.  
 
Alternative Measures of Fit 
Classification Tables. Most regression procedures print a classification table in the output. The 
classification table is a 2 × 2 table of the observed values on the outcome (e.g., 0=”no”, 1=”yes) and then 
the values predicted for the outcome by the logistic model. Then the percentage of correctly predicted 
values (percent of 0s and 1s) correctly predicted by the model is given. Some criteria for deciding what is 
a correct prediction is need, and by default the program will use the probability that Y = 1 exceeding .5 as 
“correct.” Although authors often report percent correct from the classification as an indicator of fit, it has 
an inherent problem in the use of .5 as an arbitrary cutoff for correct that is influenced by the base rate 
value of the probability that Y = 1 (see Box 13.2.8 in Cohen, Cohen, West, & Aiken, 2003). So, I tend not 
                                                           
6 Important note: G2

 is referred to as "chi-square” in SPSS printouts.  And my apologies for the notational whiplash here—I am trying to be faithful 
to the text’s notation. ln is the natural log, so ln = log in this context.  A special case of this equation is the same as the G2 equation we examined 
in connection with the 2 × 2 contingency table, G2 is a function of the observed (nij) and expected frequencies (µij) across each of the cells. 

2 2 logI J ij
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to use the percent correctly classified and tend to take it with a grain of salt when other researchers 
report it.  
 
Hosmer-Lemeshow Test. The likelihood ratio test (G2) does not always perform well (Hosmer & 
Lemeshow, 1980; McCullagh 1985; Xu, 1996), especially when data are sparse. The term “sparse” refers 
to a circumstance in which there are few observed values (and therefore few expected values) in the 
cells formed by crossing all of the values of all of the predictors. An alternative test developed by Hosmer 
and Lemeshow (1980) is commonly printed with logistic regression output. The Hosmer-Lemeshow test 
is performed by dividing the predicted probabilities into deciles (10 groups based on percentile ranks) 
and then computing a Pearson chi-square that compares the predicted to the observed frequencies (in a 
2 × 10 table).  Lower values (and nonsignificance) indicate a good fit to the data and, therefore, good 
overall model fit. Unfortunately, even Hosmer and Lemeshow (2013) do not recommend using their test 
unless the sample size is at least 400 (when sparseness may not be as much of a problem) because of 
insufficient power; and it has other potential problems (Allison, 2014; Hosmer, Hosmer, Le Cessie, & 
Lemshow, 1997). There are several other potential alternative fit tests, such as the standardized Pearson 
test or the Stukel test, which are not widely available in software packages and appear to be less often 
used by researchers (see Allison, 2014 for an excellent summary), some of which may also require 
larger sample sizes for sufficient power (Hosmer et al., 2013).  
 
Information Criteria. You will also hear about several absolute fit indices, such as the Akaike information 
criteria (AIC) or Bayesian information criteria (BIC), which can be useful for comparing models (lower 
values indicate better fit). (SPSS does not print several other global fit indices that are sometimes used 
by researchers testing logistic regression models). The AIC and BIC do not have values that are 
informative by themselves because they are fairly simply derived from the deviance using adjustments 
for sample size and number of predictors. Because the deviance itself depends on the size of the model, 
variances of the variables involved, and other factors, it has no possible standard of magnitude and thus 
neither does the AIC or BIC (there are no statistical tests for these indices and no cutoff for what 
constitutes a good fit).  Indices like the AIC and BIC are occasionally used, however, to try to compare 
non-nested models (models that do not have the same cases and where one model has a subset of 
predictors from the other model).  When models are nested, the likelihood ratio (difference in deviances) 
can be used as a statistical test (chi-square value), so there is not really a need for the AIC or BIC in that 
case. The AIC and BIC are perhaps the most commonly used but there are several other similar indices, 
such as the AICC and aBIC. The equations below show the AIC and BIC are fairly simply derived of the 
deviance (-2LL value), shown below with p as the number of predictors and n as the sample size.  
 

( )2 2 1AIC LL p= − + +   

( )( )2 log 1BIC LL pn= − + +   
 
R2 for Logistic Regression. In logistic regression, there is no true R2 value as there is in OLS regression.  
However, because deviance can be thought of as a measure of how poorly the model fits (i.e., lack of fit 
between observed and predicted values), an analogy can be made to sum of squares residual in ordinary 
least squares.  The proportion of unaccounted for variance that is reduced by adding variables to the 
model is the same as the proportion of variance accounted for, or R2. 
 

2
logistic
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LL

− −
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Where the null model is the logistic model with just the constant and the k model contains all the 
predictors in the model. 
 
There are a number of pseudo-R2 values that have been proposed using this general logic, including the 
Cox and Snell (Cox & Snell, 1989; Cragg & Uhler, 1970; Maddala,1983), Nagelkerke (1991), McFadden 
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(1974), and Tjur (2009) indexes, among others (see Allison, 2014, for a review).  As two common 
examples, consider the following: 
 

Cox & Snell Pseudo-R2  
2/

2 21
2

n

null

k

LLR
LL

 −
= −  − 

 

 
Because the Cox and Snell R-squared value cannot reach 1.0, Nagelkerke modified it.  The correction 
increases the Cox and Snell version to make 1.0 a possible value for R-squared. 
 

Nagelkerke Pseudo-R2 
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At this point, there does not seem to be much agreement on which R-square approach is best (see 
https://statisticalhorizons.com/r2logistic for a brief discussion and references), and researchers do not 
seem to report any one of them as often as they should. My recommendation for any that you choose to 
use, do not use them as definitive or exact values for the percentage of variance accounted for and to 
make some reference to the “approximate percentage of variance accounted for”. 
 
Logistic Regression, Chi-squared, and Loglinear Models Compared 
As you might have wondered by now, the simple logistic regression model with a binary independent 
variable could be used to analyze a two-way contingency table. And, in fact, for that special case, the 
likelihood ratio test from the contingency table analysis and the logistic regression are the same. Though 
the loglinear model does not distinguish between explanatory and response variables—all are essentially 
treated as response variables—the simple logistic and the likelihood ratio test from the loglinear model in 
the 2 × 2 case will equal the likelihood ratio test from the logistic regression. So, in the simple case, 
these analyses converge.  With more complex analyses, it becomes more difficult to always see the 
connection.  The three-way contingency table analysis also relates to the logistic regression model.  A 
logistic model that tests the same hypothesis as tests from the loglinear and three-way contingency tests 
can be constructed if we consider a logistic model with more than one predictor (e.g., X and Z predicting 
Y).  
 
Software Examples 
The Quinnipiac polling data7 is reanalyzed with simple logistic with a binary predictor. Compare these 
results to the results from the contingency table analyses in the “Analysis of Contingency Tables” and the 
loglinear analyses from the “Loglinear Models” handouts. 
 
SPSS 
logistic regression vars=response with ind 
   /print=summary ci(95) goodfit iter(1).  *note: CI value must be a whole number. 

 
                                                           
7 Data source: https://poll.qu.edu/georgia/release-detail?ReleaseID=3679. Note that the data extrapolated cell sample sizes and used some 
rounding, so the results should be taken as only approximate. 

https://statisticalhorizons.com/r2logistic
https://poll.qu.edu/georgia/release-detail?ReleaseID=3679
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Block 0: Beginning Block 

 
 
Block 1: Method = Enter 
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Note the corrected confidence limits above, which now include 1.0. 
 
R 
> logmod <- glm(response ~ ind, data = d, family = "binomial") 

> summary(logmod) 

 

Call: 

glm(formula = response ~ ind, family = "binomial", data = d) 

 

Deviance Residuals:  

   Min      1Q  Median      3Q     Max   

-1.273  -1.208   1.085   1.147   1.147   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|) 

(Intercept)  0.07136    0.07559   0.944    0.345 

ind          0.15019    0.14186   1.059    0.290 

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 1358.1  on 981  degrees of freedom 

Residual deviance: 1357.0  on 980  degrees of freedom 

  (6 observations deleted due to missingness) 

AIC: 1361 

 

Number of Fisher Scoring iterations: 3 

 

> #easy way to get odds ratios 

> exp(cbind(OR=coef(logmod), confint(logmod))) 

Waiting for profiling to be done... 

                  OR     2.5 %   97.5 % 

(Intercept) 1.073964 0.9261414 1.245707 

ind         1.162050 0.8804390 1.535866 

 
> #obtain psuedo-R-sq values with modEvA package 
> library(modEvA) 
> RsqGLM(model=logmod)   
$CoxSnell 
[1] 0.001143395 
 
$Nagelkerke 
[1] 0.001526185 
 
$McFadden 
[1] 0.0008271988 
 
$Tjur 
[1] 0.001142238 
 
$sqPearson 
[1] 0.001142238 

 
SAS 
proc logistic data=one order=data descending; ; 
model response=ind; 
run; 
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                                                 The LOGISTIC Procedure 
 
                                                   Model Information 
 
                            Data Set                      WORK.ONE 
                            Response Variable             response             intended vote 
                            Number of Response Levels     2 
                            Model                         binary logit 
                            Optimization Technique        Fisher's scoring 
 
 
                                        Number of Observations Read         988 
                                        Number of Observations Used         982 
 
                                                    Response Profile 
                                           Ordered                      Total 
                                             Value     response     Frequency 
                                                 1     Trump              463 
                                                 2     Biden              519 
 
                                        Probability modeled is response='Trump'. 
NOTE: 6 observations were deleted due to missing values for the response or explanatory variables. 
 
 
                                                Model Convergence Status 
 
                                     Convergence criterion (GCONV=1E-8) satisfied. 
                                                  Model Fit Statistics 
                                                                      Intercept 
                                                       Intercept            and 
                                         Criterion          Only     Covariates 
 
                                         AIC            1360.146       1361.022 
                                         SC             1365.035       1370.802 
                                         -2 Log L       1358.146       1357.022 
 
                                        Testing Global Null Hypothesis: BETA=0 
                                Test                 Chi-Square       DF     Pr > ChiSq 
 
                                Likelihood Ratio         1.1235        1         0.2892 
                                Score                    1.1217        1         0.2896 
                                Wald                     1.1209        1         0.2897 
 
                                                 The LOGISTIC Procedure 
 
                                       Analysis of Maximum Likelihood Estimates 
                                                         Standard          Wald 
                          Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
                          Intercept     1     -0.0714      0.0756        0.8912        0.3452 
                          ind           1     -0.1502      0.1419        1.1209        0.2897 
 
 
                                                  Odds Ratio Estimates 
 
                                                    Point          95% Wald 
                                       Effect    Estimate      Confidence Limits 
 
                                       ind          0.861       0.652       1.136 



Newsom   
Psy 525/625 Categorical Data Analysis, Spring 2021   10 
 
 
 
                              Association of Predicted Probabilities and Observed Responses 
 
                                   Percent Concordant      21.9    Somers' D    0.031 
                                   Percent Discordant      18.9    Gamma        0.075 
                                   Percent Tied            59.2    Tau-a        0.015 
                                   Pairs                 240297    c            0.515 
 

Multiple Logistic Examples 
To illustrate multiple logistic regression, I used data from the Late Life Study of Social Exchanges 
(LLSSE; Sorkin & Rook, 2004) to predict self-reported heart disease. Predictors include sex (w1sex), 
vigorous physical activity (w1active), depression symptomatology from the brief 9-item version (Santor 
& Coyne, 1997) of the Center for Epidemiologic Studies-Depression scale (Radloff, 1977), and a 
measure of negative social exchanges (w1neg; Newsom, Rook, Nishishiba, Sorkin, & Mahan), which 
assesses the frequency of interpersonal conflicts. 
 
SPSS 
logistic regression vars=w1hheart with w1sex w1activ w1cesd9 w1neg 
   /print=summary ci(95) goodfit iter(1).   *note: CI value must be a whole number. 

 

 
 

 
Correct confidence limits now in the above table.  
 
R 
 
> logmod <- glm(w1hheart ~ w1sex + w1activ + w1cesd9 + w1neg, data = d, family = "binomial") 
> summary(logmod) 
 
 
Call: 
glm(formula = w1hheart ~ w1sex + w1activ + w1cesd9 + w1neg, family = "binomial",  
    data = d) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.0471  -0.6846  -0.4980  -0.4545   2.2390   
 
Coefficients: 
            Estimate Std. Error z value      Pr(>|z|) 

Nagelkerke R 
Square

Cox & Snell R 
Square

-2 Log 
likelihood

1 .055.033602.480 a

StepStep

Model Summary

a. Estimation terminated at iteration number 5 because 
parameter estimates changed by less than .001.


Sig.dfChi-square

Step

Block

Model

Step 1

.000423.238

.000423.238

.000423.238

Omnibus Tests of Model Coefficients
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(Intercept) -1.19911    0.20588  -5.824 0.00000000574 
w1sex       -0.97841    0.21440  -4.563 0.00000503352 
w1activ     -0.04065    0.04788  -0.849         0.396 
w1cesd9      0.03539    0.02216   1.597         0.110 
w1neg        0.06780    0.18643   0.364         0.716 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 625.72  on 691  degrees of freedom 
Residual deviance: 602.48  on 687  degrees of freedom 
  (32 observations deleted due to missingness) 
AIC: 612.48 
 
Number of Fisher Scoring iterations: 4 
 
> #obtain odds ratios 
> exp(cbind(OR=coef(logmod), confint(logmod))) 
Waiting for profiling to be done... 
                   OR     2.5 %    97.5 % 
(Intercept) 0.3014610 0.1998632 0.4485558 
w1sex       0.3759076 0.2458771 0.5707173 
w1activ     0.9601616 0.8724972 1.0530681 
w1cesd9     1.0360220 0.9909311 1.0812665 
w1neg       1.0701472 0.7324376 1.5282734 
 
 
> #obtain psuedo-R-sq values with modEvA package 
> library(modEvA) 
> RsqGLM(model=logmod)  
  
 
$CoxSnell 
[1] 0.03302352 
 
$Nagelkerke 
[1] 0.05548855 
 
$McFadden 
[1] 0.03713834 
 
$Tjur 
[1] 0.03423869 
 
$sqPearson 
[1] 0.03373417 
 
 
SAS 
proc logistic data=one order=data descending; ; 
model w1hheart=w1sex w1activ w1cesd9 w1neg; 
run; 
 

Number of Observations Read         724 
Number of Observations Used         692 

 
                                                    Response Profile 
 
                                           Ordered                       Total 
                                             Value     w1hheart      Frequency 
 
                                                 1     yes                 116 
                                                 2     no                  576 
 
                                         Probability modeled is w1hheart='yes'. 
 
NOTE: 32 observations were deleted due to missing values for the response or explanatory variables. 
 
                                                Model Convergence Status 
 
                                     Convergence criterion (GCONV=1E-8) satisfied. 
 
                                                  Model Fit Statistics 
 
                                                                      Intercept 
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                                                       Intercept            and 
                                         Criterion          Only     Covariates 
 
                                         AIC             627.718        612.480 
                                         SC              632.258        635.178 
                                         -2 Log L        625.718        602.480 
 
 
                                        Testing Global Null Hypothesis: BETA=0 
 
                                Test                 Chi-Square       DF     Pr > ChiSq 
 
                                Likelihood Ratio        23.2381        4         0.0001 
                                Score                   23.6844        4         <.0001 
                                Wald                    22.6227        4         0.0002 
 
  
 
 
The LOGISTIC Procedure                                     
Analysis of Maximum Likelihood Estimates 
 
                                                         Standard          Wald 
                          Parameter    DF    Estimate       Error    Chi-Square    Pr > ChiSq 
 
                          Intercept     1     -1.1991      0.2059       33.9219        <.0001 
                          w1sex         1     -0.9784      0.2144       20.8240        <.0001 
                          w1activ       1     -0.0407      0.0479        0.7209        0.3958 
                          w1cesd9       1      0.0354      0.0222        2.5497        0.1103 
                          w1neg         1      0.0678      0.1864        0.1322        0.7161 
 
                                                 Odds Ratio Estimates 
                                                    Point          95% Wald 
                                      Effect     Estimate      Confidence Limits 
 
                                      w1sex         0.376       0.247       0.572 
                                      w1activ       0.960       0.874       1.055 
                                      w1cesd9       1.036       0.992       1.082 
                                      w1neg         1.070       0.743       1.542 
 
                             Association of Predicted Probabilities and Observed Responses 
 
                                   Percent Concordant     64.4    Somers' D    0.291 
                                   Percent Discordant     35.3    Gamma        0.292 
                                   Percent Tied            0.3    Tau-a        0.081 
                                   Pairs                 66816    c            0.645 
 
 
Sample Write-Up 
To identify factors that predict self-reported heart disease in a sample of older adults, a multiple logistic 
regression analysis was conducted, simultaneously entering sex, self-reported physical activity, 
depression scores, and negative social exchanges into the model.  The results indicated that, together, 
the predictors accounted for a significant amount of variance in success, likelihood ratio χ2(4) = 23.238, p 
< .001.  The Nagelkerke pseudo-R2 indicated approximately 6% of the variance in heart disease was 
accounted for by the predictors overall.  Out of all of the predictors in the model, only sex was a 
significant independent predictor of heart disease, b = -.978, SE = .214, p <.001, with women more than 
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two and a half times less likely to report heart disease, OR = .376 (where the odds for men vs. women = 
1/.376 = 2.660) after controlling for activity level, depression, and negative social exchanges.8  
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