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Latent Class Analysis 
 
This is just a very brief introduction to the general concepts of latent class analysis.  The topic deserves 
much more space than this, but this handout will give you a general idea of the purpose of the analysis 
and some suggestions for further readings.  
 
Latent Variables 
Latent class analysis (Lazarsfeld & Henry, 1968; Goodman, 1974) is a kind of measurement model which 
estimates an unobserved construct, or latent variable, defined by a set of observed variables.  The idea 
is much like a traditional factor analysis model in which a set of observed variables define an underlying 
continuous construct.  A traditional factor analysis, for example, might involve a set of questions about 
various political attitudes to try to define an underlying construct of political conservativism. The 
advantage of such an approach is that the shared variance among the questions can be extracted to 
create a more reliable measure of political conservativism, removing measurement error and variance 
that is unique to any of the observed variables.  That latent variable can then be used in regression 
model to improve the estimates of the associates with other variables by correcting for the attenuation 
that occurs with measurement error.  In contrast to the factor analysis model, the latent class model 
groups individuals in order to identify types of voters, perhaps obtaining patterns that reflected groups 
such as moderate liberal, radical progressive, apolitical, and libertarian.  The classes are assumed to 
represent nominal categories of voters and do not represent a continuum. As with factor models, the 
observed variables, or indicators, can be continuous or binary measures (ordinal indicators are also 
possible). The term latent profile analysis is used for the special case in which indicators are continuous, 
but latent class analysis is used more generally to refer to models whether binary or continuous 
indicators are involved.  
 
Latent Class Analysis 
The latent class measurement model (i.e., there are no predictors of the latent class and the latent class 
does not predict anything) seeks to find some set of mutually exclusive and exhaustive categories that 
group cases based on a set of observed variables. Either exploratory or confirmatory approaches to 
latent class models are possible, analogous to the distinction between exploratory and confirmatory 
factor analysis.  For exploratory models, the number of latent classes is not specified, usually because 
no clear hypothesis exists about the number of latent classes. In the confirmatory form, which I will 
mostly focus on here, the number of classes is specified and the software provides an estimate of the fit 
of the data to the hypothesized number of classes. Though the true number of classes is still unknown in 
the confirmatory model, a number ultimately must be specified in the application.  The meaning of each 
latent class must be inferred from the data or theory, and it is up to the researcher to name and interpret 
them. Contrast the example of unknown political class described above from an example of a known 
political class, such as when the respondent can be assigned as a Democrat, Independent, or 
Republican based on self-declaration or registration documents, for instance.  Latent class membership 
of any one individual is estimated in a probabilistic fashion. 
 
The figure below follows confirmatory factor analysis and structural equation modeling conventions to 
depict a latent class model. The ellipse is used to represent the latent variable, called η (the Greek eta) 
with a superscript C for some number of classes, and the square boxes represent the measured 
variables, yj.  
 

 

αc

y1 y2 y3

Cη



Newsom   
Psy 525/625 Categorical Data Analysis, Spring 2021   2 
 
Each arrow represents a type of regression, where the observed variable yj is predicted by the latent 
variable. The v (the Greek nu) is the intercept for that regression.  If the indicators were binary, we would 
use τ, the Greek letter tau, for a threshold, as with generalized linear modeling thresholds.1 Latent class 
models do not have traditional factor loadings (the regression slope), and this is why the arrows are 
represented with dotted lines here. Instead, the pattern of measurement intercepts (for continuous 
indicators) or response probabilities (for binary indicators) across classes indicate the strength of the 
relationship between factor and item. The epsilons, εj, represent measurement residuals that include 
unaccounted for (unique) variance including measurement error.    
 
The model provides C – 1 latent class factor mean estimates, αc.2 These values are like the intercepts 
from a logistic regression. Because there are no predictors of this latent class variable, we have an 
intercept only model and no regression coefficient.  If there are only two classes, then then there will be 
one intercept value. Just like in logistic regression, the estimates of αc are in logit form and we would 
need to use the logistic transformation to obtain an estimated probability of membership in a given class, 
exactly as we would with a logistic model.     
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The class membership probability is the estimate of the proportion of the sample that belongs to a certain 
class. In other words, for a two class model, 1π̂  would tell us the proportion of cases we expect to be 
members of the first class, where c = 1. If there are three classes, there will be two intercept values.  The 
program may choose the last category as the referent class by default, but the referent group is the same 
as the use of Y = 0 as the referent group in binary or multinomial logistic regression. When there are 
more than two classes, we extend the transformation, using the multinomial logistic transformation. 
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The probabilities for all of the classes must sum to 1.0.  
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Mixture Models 
A focus on multiple indicators in a more traditional latent class analysis has served to provide an 
introduction to some of the underlying principles of categorical latent variables.  A more general 
framework, suggested by Muthén and colleagues (Clark & Muthén, 2009; Lubke & Muthén, 2005; 
Muthén, 2001; 2002; Muthén & Muthén, 2000), combines categorical and continuous latent variables in 
the same model. These structural equation mixture models open a variety of possible avenues for 
investigating hypotheses involving unknown groups in two important ways—(1) associations among 
categorical latent variables, continuous latent variables, continuous observed variables, or categorical 
observed variables can be examined, and (2) categorical latent variables can be used in a flexible 
manner that allows classification of observed or latent variables. 
 
 
 
                                                           
1 When the indicators are binary the thresholds, τj, can be converted using the logistic cdf transformation to obtain the estimated response 
probabilities, which are closely related to response probabilities in item response theory (IRT), except that the latent variable is categorical in the 
latent class model but usually assumed to be continuous in the standard IRT model.  
2 I apologize that my notation differs from the Collins and Lanza course reading.  They use L for a particular latent class and p for the probability. 
I’m trying to be consistent with more writings on the subject and our main text.  
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Estimation, Model Identification, and Fit 
The most common estimator for latent class models is maximum likelihood using an expectation 
maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977).  In the EM steps of the ML process, 
conditional expectations and the posterior class membership probabilities are computed in the 
expectation step and parameter estimates are updated. The fit is then maximized through iterations in 
the maximization step. This process alternates between the two steps until an optimization criterion is 
reached. Estimation can be sensitive to start values and it is wise to retest any model with different start 
values to be certain that convergence was reached at a global solution not a local solution (Hipp & 
Bauer, 2006), a testing process that may be automated within the software program.  Many packages 
now employ random starts, and the user can specify the number of sets of random start values the 
computers uses.3 A log-likelihood value obtained upon convergence is used to compute fit indices.  
 
For identification, the number of classes must be less than the number of indicators unless there are 
additional constraints (e.g., equal variances for the indicators across classes).  Thus, with three 
indicators, only two classes can be specified without special restrictions. For latent class models that 
have binary indicators and do not include covariates or latent variables, a likelihood ratio chi-squared (G2) 
and Pearson chi-squared are computed to assess fit.  Degrees of freedom for these tests can be 
calculated by 2 1Jdf q = − −  , where q is equal to the number of latent class means estimated (C – 1) plus 
the number of class-specific intercepts. For example, with binary 4 indicators and 2 classes, there are 6 
degrees of freedom.  With three indicators and two classes, the model is just identified.  Though the 
model may be theoretically identified, it may not be empirically identified and restrictions may be 
necessary for convergence. Models with a large number of binary indicators, fewer cases, large number 
of classes, low membership proportions in one or more classes, or sparse data (i.e., low frequency in the 
contingency table) may be more susceptible to convergence issues (Lubke & Muthén, 2005; 2007).  
 
The likelihood ratio chi-squared may be problematic for sparse data, where the Pearson chi-squared is 
sometimes substituted. The likelihood ratio chi-squared is not valid for comparing different number of 
classes (Lanza, Bray, & Collins, 2013), however. No chi-squared model fit is available for latent class 
models with continuous indicators. Instead assessment of fit must rely on likelihood-based fit indices, 
such as the Akaike Information Criteria and the Bayesian Information Criteria, which are commonly used 
for evaluation of fit relative to comparison models.  The sample size adjusted BIC (aBIC; Sclove, 1987) 
seems to perform better than other information criteria (e.g., Nylund, Asparouhov, & Muthén, 2007).   
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The quantity -2LL is the -2 log likelihood value for the H0 model, q is the number of free parameters, and 
N is the sample size.  The number of free parameters q is ( )( )2 1 1JC J C− − − .   
 
Another concept related to model fit is entropy. Entropy is a measure of the overall accuracy of 
classification or class separation. Although there are several possible measures of accuracy, the entropy 
index, E, which represents a kind of average of the natural log of all class membership probabilities, is 
the most frequently employed (Ramaswamy, DeSarbo, Reibstein, & Robinson, 1993):  
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C is the number of classes and ˆicπ  is the predicted class membership probability for an individual. Values 
of E can range between 0 and 1. Higher values indicate greater separation and therefore better fit in one 
                                                           
3 I use a minimum of 20 and increase the number with more complex models, often rerunning models with more random starts to confirm that 
the the results do not change 
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sense.4  Although some authors give cutoff suggestions for acceptable entropy values (I often hear .8), 
entropy is probably best used for comparing different models (Celeux & Soromenho, 1996).  
 
Determining the Number of Classes 
Part of the process of latent class analysis involves deciding on the correct number of classes, 
sometimes called class enumeration. Although the researcher may have a priori hypotheses about the 
number of classes, comparisons are usually made among models with different numbers of classes to 
provide evidence that the number of classes is correct. The difference in the log likelihoods for two 
models with a different number of classes is not distributed as a chi-squared, so an exact test to compare 
models does not exist.  The BIC or adjusted BIC is commonly used for this purpose (lower values 
indicating better fit) and performs fairly well (Tofighi & Enders, 2006), but a number of simulation studies 
suggest that more precise methods may be preferable.  These methods are designed to compare two 
models that differ by only one latent class. Among the several proposed alternatives are a bootstrapped 
likelihood ratio test (Nylund et al., 2007), the Lo-Mendell-Rubin adjusted likelihood ratio test, and the 
Vuong-Lo-Mendell-Rubin likelihood ratio test (Lo, Mendell, Rubin, 2007; Vuong, 1989). Nylund and 
colleagues provide evidence that the parametric bootstrap standard error and p-value adjustment to the 
Vuong-Lo-Mendell-Rubin (VLMR) comparison is performers preferably.   
 
An additional complication is that for every latent class model there is an equivalent continuous factor 
model that can account for the same covariance matrix, where the continuous factor model has one 
fewer factors than classes in the latent class model (e.g., Bauer & Curran, 2004; Bartholomew, 1987). 
The equivalence of these models has sparked considerable discussion among statisticians that is likely 
to be continued, but, for the applied researcher, there is currently no simple way to distinguish among the 
two types of models on an empirical basis. There is no choice for the researcher but to decide which type 
of model is most appropriate based on theoretical considerations in the context of the questions most of 
interest.  
 
Software 
Most software programs use a maximum likelihood estimation via the expectation maximization (EM) 
algorithm, but a Bayesian process is also possible.  There are a variety of software programs that 
estimate latent class models, including the poLCA and lcca packages in R, PROC LCA, which is a free 
macro for SAS (Lanza, Collins, Lemmon, & Schafer, 2007) and Latent Gold (Vermunt & Magidson, 
2005), and structural equation modeling packages, such as Mplus (Muthén & Muthén, 1998–2012) and 
Mx (Boker et al., 2012) integrate latent class variables within the larger structural equation modeling 
framework (the so-called mixture modeling approach).  Mplus uses the maximum likelihood-EM 
approach with a robust standard error adjustment as the default. 
 
Examples 
The example below uses a set of items about sleep difficulty taken from the Australian sleep study.  
R 
I use the poLCA package in R (Linzer & Lewis, 2011). It requires numeric variables coded 1 and 2 (or 
they must be positive integers). The nrep keyword is for the number of start values. 
 
>  
> library(haven) 
> d = read_sav("c:/jason/spsswin/cdaclass/sleep.sav") 
>  
> library(summarytools) 
>  
> library(poLCA) 
> lcamod = poLCA(cbind(trubslep, trubstay, wakenite, liteslp,  
+                      refreshd, medhelp,problem, stopb, restlss, drvsleep,  
+                      drvresul) ~ 1,maxiter=50000, nclass=2, nrep=25, data=d) 
Model 1: llik = -1178.771 ... best llik = -1178.771 
Model 2: llik = -1178.771 ... best llik = -1178.771 
Model 3: llik = -1181.842 ... best llik = -1178.771 
Model 4: llik = -1178.771 ... best llik = -1178.771 
Model 5: llik = -1178.771 ... best llik = -1178.771 
Model 6: llik = -1181.842 ... best llik = -1178.771 
Model 7: llik = -1178.771 ... best llik = -1178.771 

                                                           
4 The usage of entropy is seemingly the opposite of the use in physics, where it is a tendency toward disorganization. 
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Model 8: llik = -1181.842 ... best llik = -1178.771 
Model 9: llik = -1178.771 ... best llik = -1178.771 
Model 10: llik = -1178.771 ... best llik = -1178.771 
Model 11: llik = -1178.771 ... best llik = -1178.771 
Model 12: llik = -1178.771 ... best llik = -1178.771 
Model 13: llik = -1178.771 ... best llik = -1178.771 
Model 14: llik = -1178.771 ... best llik = -1178.771 
Model 15: llik = -1181.842 ... best llik = -1178.771 
Model 16: llik = -1181.842 ... best llik = -1178.771 
Model 17: llik = -1178.771 ... best llik = -1178.771 
Model 18: llik = -1178.771 ... best llik = -1178.771 
Model 19: llik = -1178.771 ... best llik = -1178.771 
Model 20: llik = -1178.771 ... best llik = -1178.771 
Model 21: llik = -1181.842 ... best llik = -1178.771 
Model 22: llik = -1181.842 ... best llik = -1178.771 
Model 23: llik = -1181.842 ... best llik = -1178.771 
Model 24: llik = -1178.771 ... best llik = -1178.771 
Model 25: llik = -1178.771 ... best llik = -1178.771 
Conditional item response (column) probabilities, 
 by outcome variable, for each class (row)  
  
$trubslep 
           Pr(1)  Pr(2) 
class 1:  0.4043 0.5957 
class 2:  0.7951 0.2049 
 
$trubstay 
           Pr(1)  Pr(2) 
class 1:  0.2275 0.7725 
class 2:  0.9185 0.0815 
 
$wakenite 
           Pr(1)  Pr(2) 
class 1:  0.0733 0.9267 
class 2:  0.3180 0.6820 
 
$liteslp 
           Pr(1)  Pr(2) 
class 1:  0.3812 0.6188 
class 2:  0.7828 0.2172 
 
$refreshd 
           Pr(1)  Pr(2) 
class 1:  0.2156 0.7844 
class 2:  0.5444 0.4556 
 
$medhelp 
           Pr(1)  Pr(2) 
class 1:  0.8874 0.1126 
class 2:  1.0000 0.0000 
 
$problem 
          Pr(1) Pr(2) 
class 1:  0.223 0.777 
class 2:  0.914 0.086 
 
$stopb 
           Pr(1)  Pr(2) 
class 1:  0.9269 0.0731 
class 2:  0.9027 0.0973 
 
$restlss 
           Pr(1)  Pr(2) 
class 1:  0.4778 0.5222 
class 2:  0.9195 0.0805 
 
$drvsleep 
           Pr(1)  Pr(2) 
class 1:  0.7966 0.2034 
class 2:  0.9307 0.0693 
 
$drvresul 
           Pr(1)  Pr(2) 
class 1:  0.8716 0.1284 
class 2:  0.9246 0.0754 
 
Estimated class population shares  
 0.5152 0.4848  
  
Predicted class memberships (by modal posterior prob.)  
 0.5134 0.4866  
  
=========================================================  
Fit for 2 latent classes:  
=========================================================  
number of observations: 224  
number of estimated parameters: 23  
residual degrees of freedom: 201  
maximum log-likelihood: -1178.771  
  
AIC(2): 2403.543 
BIC(2): 2482.011 
G^2(2): 403.8194 (Likelihood ratio/deviance statistic)  
X^2(2): 2460.182 (Chi-square goodness of fit) 
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SAS 
SAS does not have a built in LCA procedure, but Lanza and colleagues (2015) have developed a macro 
that can be installed into the SAS program folder (see the SAS LCA macro installation instructions: 
https://www.methodology.psu.edu/files/2019/03/Installing_PROC_LCA_M4-23myjrn.pdf).5  
 
(proc syntax was omitted in original version) 
 
proc lca data=one; 
nclass 2; 
items trubslep trubstay wakenite liteslp refreshd medhelp 
problem stopb restlss drvsleep drvresul; 
categories 2 2 2 2 2 2 2 2 2 2 2; 
seed 51921; 
nstarts 40; 
rho prior=1; 
run; 
 
 
              Data Summary, Model Information, and Fit Statistics (EM Algorithm) 
 
Number of subjects in dataset:         224 
Number of subjects in analysis:        224 
 
Number of measurement items:            11 
Response categories per item:            2 2 2 2 2 2 2 2 2 2 2 
Number of groups in the data:            1 
Number of latent classes:                2 
 
NOTE: A data-derived prior was applied to the rho parameters to help 
      avoid parameter estimates on boundary values of zero and one. 
 
Rho starting values were randomly generated (seed = 51921). 
 
No parameter restrictions were specified (freely estimated). 
 
Seed selected for best fitted model:    1231039985 
Percentage of seeds associated with best fitted model:  100.00% 
 
The model converged in 56 iterations. 
 
Maximum number of iterations: 5000 
Convergence method: maximum absolute deviation (MAD) 
Convergence criterion:  0.000001000 
 
============================================= 
Fit statistics: 
============================================= 
 
Log-likelihood:     -1178.81 
G-squared:            403.90 
AIC:                  449.90 
BIC:                  528.37 
CAIC:                 551.37 
Adjusted BIC:         455.48 
Entropy:                0.76 
Degrees of freedom:     2024 
                           Parameter Estimates 
 
Class membership probabilities: Gamma estimates (standard errors) 
Class:                     1          2 
                      0.5126     0.4874 
                     (0.0493)   (0.0493) 

                                                           
5 PROC LCA & PROC LTA (Version 1.3.2) [Software]. (2015). University Park: The Methodology Center, Penn State. Retrieved from 
http://methodology.psu.edu 
 

https://www.methodology.psu.edu/files/2019/03/Installing_PROC_LCA_M4-23myjrn.pdf
http://methodology.psu.edu/
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Item response probabilities: Rho estimates (standard errors) 
  Response category  1: 
Class:                     1          2 
  trubslep    :       0.4043     0.7929 
                     (0.0499)   (0.0461) 
  trubstay    :       0.2275     0.9148 
                     (0.0521)   (0.0420) 
  wakenite    :       0.0734     0.3167 
                     (0.0283)   (0.0482) 
  liteslp     :       0.3812     0.7806 
                     (0.0499)   (0.0483) 
  refreshd    :       0.2151     0.5431 
                     (0.0468)   (0.0521) 
  medhelp     :       0.8871     0.9997 
                     (0.0305)   (0.0019) 
  problem     :       0.2228     0.9105 
                     (0.0544)   (0.0409) 
  stopb       :       0.9266     0.9032 
                     (0.0252)   (0.0293) 
  restlss     :       0.4779     0.9171 
                     (0.0511)   (0.0374) 
  drvsleep    :       0.7963     0.9303 
                     (0.0397)   (0.0265) 
  drvresul    :       0.8716     0.9244 
                     (0.0335)   (0.0283) 
 
  Response category  2: 
Class:                     1          2 
  trubslep    :       0.5957     0.2071 
                     (0.0499)   (0.0461) 
  trubstay    :       0.7725     0.0852 
                     (0.0521)   (0.0420) 
  wakenite    :       0.9266     0.6833 
                     (0.0283)   (0.0482) 
  liteslp     :       0.6188     0.2194 
                     (0.0499)   (0.0483) 
  refreshd    :       0.7849     0.4569 
                     (0.0468)   (0.0521) 
  medhelp     :       0.1129     0.0003 
                     (0.0305)   (0.0019) 
  problem     :       0.7772     0.0895 
                     (0.0544)   (0.0409) 
  stopb       :       0.0734     0.0968 
                     (0.0252)   (0.0293) 
  restlss     :       0.5221     0.0829 
                     (0.0511)   (0.0374) 
  drvsleep    :       0.2037     0.0697 
                     (0.0397)   (0.0265) 
  drvresul    :       0.1284     0.0756 
                     (0.0335)   (0.0283) 
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