Newsom
Psy 525/625 Categorical Data Analysis, Spring 2021 1

Diagnostics for Logistic Regression
An important part of model testing is examining your model for indications that statistical assumptions
have been violated. This diagnostic process involves a considerable amount of judgement call, because
there are not typically any definitive statistical tests that can be used to provide assurance that the model
meets assumptions or not. One reason that diagnosis is somewhat of a judgement call is that
assumptions, such as normality of errors, applies to the population, which we do not have definitive
information about. This means that the sample data may be expected to depart from what is expected by
the assumption even if there is no real violation in the population.

Assumptions with Logistic Regression

I will give a brief list of assumptions for logistic regression, but bear in mind, for statistical tests generally,
assumptions are interrelated to one another (e.g., heteroscedasticity and independence of errors) and
different authors word them differently or include slightly different lists. | will not discuss several
assumptions—independence of errors/observations, correctly specified model (all relevant predictors
included), correct functional form, absence of multicollinearity, fixed predictors (measured without
error)—in detail here, because they are common to ordinary least squares regression (see Cohen,
Cohen, West, & Aiken, 2003, for a good introduction). There are a couple of other special numerical
problems that occur with logistic regression that | will also address here.

An important assumption of logistic regression is that the errors (residuals) of the model are
approximately normally distributed. The observed values on the response variable cannot be normally
distributed themselves, because Y is binary. But the model has a nonlinear transformation of the
predicted values, so the degree to which observed values deviate from the predicted values is expected
to vary across a range of values, with most residuals being near 0 and fewer residuals deviating far from
the predicted line (either above or below). Strictly speaking, the errors are expected to follow a logistic
distribution in the population. With a sufficiently large sample size, the normal distribution can be and is
typically used as a comparison, because z and »? distributions can be conveniently used for gauging
whether values are extreme or not (though this is not a significance test of the distributional assumption,
just a method of examining the degree of departure from the logistic distribution). The error distribution
assumption pertains to several potential data problems, including skewness, kurtosis, outliers, and
heteroscedasticity (larger residuals for some values of X compared with others). These issues are not
independent of one another either. Outliers (extreme values) lead to skewness of the error distribution
and kurtosis and skewness are closely related mathematically.

Several authors have pointed out that omitted variables that are related to the outcome can bias logistic
regression coefficients for the predictors included in the model even if the omitted variables are unrelated
to the predictors, a phenomenon known as unobserved heterogeneity (e.g., Allison, 1999, Hauck et al.,
1991; Mood, 2010). The impact of omitted variables in logistic regression is in contrast to what occurs
with ordinary least squares regression, in which omitted variables have no impact on model coefficients if
they are unrelated to the predictor. Unobserved heterogeneity leads to logistic coefficients for predictors
in the model that are biased toward zero (i.e., whenever variables are omitted from the model the effects
of the variables will be underestimated). The unobserved heterogeneity bias increases for omitted
variables that are more strongly related to the outcome and when omitted variables have larger
variances (Mood, 2010). Unobserved heterogeneity complicates comparison of odds ratios across
samples, across groups, time points, or across different scales because of the sensitivity of odds ratios to
predictor scaling and unobserved heterogeneity. Buis (2015) argues that the unobserved heterogeneity
phenomenon is a natural consequence of predicting probabilities, because including any variables that
account for variance in the outcome, even if unrelated to other predictors, implies that the predicted
probability of event occurrence is farther from chance (i.e., 7 = .5).

Diagnostics
Let’s start with a discussion of outliers. In ordinary least squares regression, we can have outliers on the
X variable or the Y variable. With logistic regression, we cannot have extreme values on Y, because
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observed values can only be 0 and 1. For identifying problematic cases, we therefore need to consider
the residuals rather than the observed values of Y. In logistic regression, the residual is defined as the
difference between the observed probability that ¥ = 1 compared with the predicted value that Y = 1 for
any value on X. We will use a subscript jto indicate a particular case or group of cases with the same

value on X, so the observed probability for some particular value of X is P(Yj :1) and the predicted

probability for some particular value of X is 13(Yj = 1) =#,." The residuals are typically given in terms of

frequencies, so the count of the observed values where Y; = 1, we will call y; and the count of cases
predicted to be to be 1is n,7;, with »; representing the number of cases with the value X;. The raw

residual, then, is simply the deviation between the observed and expected counts for ¥; = 1, given as
y,—nz, . The Pearson, or sometimes standardized residual, divides by the standard error estimate

(with the number of cases with value X; given as n)) is

Residual , =r, = ——L—

J J N N
n;7; (1 _”;f)

It may be a little difficult to imagine the predicted values for ¥; if you think about individual cases with a

unique X; value, but recall that the predicted value is a theoretical value represented by the line that

summarizes the X-Y relationships. These values can be evaluated in terms of a normal distribution and

the sum of their squared values is often used as chi-squared value representing the overall degree to

which the residuals deviate from the line, »* =) r’. Alternatively, the deviance residual is sometimes

used (corresponds to the studentized residual in OLS), but it is based on G? log function, so a bit more
complicated

0 d,=-2|n(1-n,2,)

Yj
I d;+2fin(1-n7,)

In multiple logistic regression, we have to consider multiple X values, and so texts often consider a
covariate pattern using vector notation to refer to a particular constellation of values on a set of
predictors, x; instead of casewise values of X with one case per value.

Because observed values on Y cannot be outliers themselves, there is a considerable focus on
identifying potentially extreme values on X. Moreover, with logistic regression, the residuals are
dependent on value of X. A common diagnostic index for extreme values on X is leverage, or sometimes
“hat” values, denoted #; here.

h, :[nj;%j(l—frj)](bj)

where b; is a multivariate measure of weighted distance from the central mean.? In ordinary least
squares, higher values on #; reflect more extreme values on X. But Hosmer and Lemeshow (2000)
demonstrate that leverage drops off precipitously for very high or very low expected probabilities, so it is
problematic as an outlier index. b; is a better diagnostic for outliers on X then. Leverage values are
important though, because Pearson residuals are a direct function of these values

" I'm sorry to deviate from notation used in the assigned reading on this topic (Menard, 2010), but it is probably better to stick with the notation
from the text (e.g., Chapter 8) and as closely as we can to the notation we have used up until this point.

2 b, =x, (X’VX)'l x; , which is closely related to Mahalanobis distance and is not to be confused with the regression coefficient.
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T Z(y/ _n.iﬁ./')/(l_hj)'

Finally, influential cases can be identified by exploring the degree to which the model fit or the
coefficients are altered by removing a particular case. A;(f. is the change in the model chi-square by

deletion of a single case (analogous to standardized deleted residuals), AD; is the change in the

deviance by deletion of a single case (analogous studentized deleted residuals), and Ag; is the change

in the regression coefficient by deleting a case, known as dfbeta. Each of these indices have a value for
each case in the data set. The fit or coefficient for the model is computed repeatedly deleting one case
each time using all cases except the j" case. Authors sometimes recommend cutoff values for these
indices, but it is best to obtain the values for all cases and investigate cases for which the value is high
relative to other cases in the data set.

Visualization
A critical step in evaluating model assumptions should be plots of the data. We can use any of these
various diagnostic values in a plot, usually putting the estimated probabilities, 7, on the x-axis. The

estimated probabilities (i.e., analogous to predicted values in OLS) stand in for X values in a multiple
regression, because they are a perfect weighted function of the set of predictors in the model. Menard
(2010) and Hosmer, Lemeshow, and Sturdivant (2010) illustrate several types of plots, and | show how to
obtain a couple of them below.

Remedies

There are several potential problems outlined above, and there are remedies for most these issues,
although not all ideal. For outliers, there are several options, including identifying an entry or
computational error and correcting it, eliminating an invalid case (e.g., did not meet inclusion criteria),
transforming the relevant variable, analyzing the data with and without the outlier and reporting both sets
of results, or use an alternative estimation or robust approach. Dependence of observations (errors)
implies some type of clustering in many instances, which may result from nesting (e.g., within household
or organization) or serial dependency or time-related clustering (e.g., longitudinal data). Dependence
may be addressed with a robust estimator or explicit modeling of clustering. Robust estimators (e.g.,
Huber-White estimates, Huber, 1967; White, 1980; M-estimates, Huber, 1964) may be the most relevant
when there is not a design-related complete clustering in which cases are nested within organizations or
observations are nested within individuals (i.e., longitudinal data). For design-related clustering, complex
sampling design adjustments (e.g., see Lee & Forthofer, 2006), generalized estimating equations (GEE;
Liang & Zeger, 1986) or multilevel regression models (aka hierarchical linear models; Raudenbush &
Bryk, 2002) can be used. These two approaches will be briefly described in the section on longitudinal
logistic models.

Software Examples

SPSS

SPSS is a bit more limited in the potential diagnostics available with the logistic regression command.
Any of the diagnostics available can be plotted. | illustrate one such plot below.

logistic regression vars=wlhheart with wlsex wlactiv wlcesd9 wlneg
/print=summary ci(.95) goodfit iter (1)
/casewise pred zresid lever dfbeta
/save pred (predprob) dfbeta (difbeta) zresid(pearsonr) lever (leverage) .
*note: zresid is the pearson residual, no change in Pearson chi-square or deviance is available.
*there is one dfbeta in the data set for each predictor starting with dfbetal for the intercept.

Below, | only included a few of the cases form the casewise table.
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R
The LogisticDx package generates a host of diagnostics from the logistic model generated by the
glm function. By default diagnostics are given by covariate pattern, but byCov==FALSE gives casewise output.

Togmod <- gIim(wlhheart ~ wlsex + wlactiv + wlcesd9 + wlneg, data = mydata, family = "binomial")

summary (Togmod)
Tibrary(LogisticDx)
dx (Togmod)
(Intercept) wlsexfemale wlactiv wlcesdd _ wlneg y Pn yhat Pr dr h sPr sdr dchisq dpev dBhat
1: 1 0 1 2 0.000000 1 0.24446796 4 0.97787184 0.02574411 0.0256792 0.006833763 0.02583253 0.02576739 0.0006673194 0.0006639585 1: 0.000004591681
2: 1 1 1 6 0.000000 1 0.12290580 7 0.86034060 0.16077253 0.1572776 0.003651679 0.16106688 0.15756558 0.0259425387 0.0248269131 2: 0.000095081022
3: 1 0 4 3 0.000000 1 0.22883333 5 1.14416667 -0.15347799 -0.1558991 0.004635586 -0.15383496 -0.15626169 0.0236651950 0.0244177157 3: 0.000110212951
4: 1 0 4 0 0.000000 1 0.21063936 4 0.84255744 0.19305659 0.1890141 0.005131371 0.19355383 0.18950088 0.0374630853 0.0359105820 4: 0.000193228504
5: 1 0 6 2 0.000000 1 0.20889378 4 0.83557511 0.20223551 0.1977772 0.007098383 0.20295713 0.19848292 0.0411915949 0.0393954711 5: 0.000294484068
462: 1 1 7 6 0.000000 1 0.09893465 1 0.09893465 3.01789375 2.1509513 0.007685417 3.02955791 2.15926475 9.1782211551 4.6624242699 462: 0.071084770994
463: 1 1 1 5 0.000000 3 0.11914156 3 0.35742467 4.70957864 3.5727661 0.003462391 4.71775308 3.57896737 22.2571941107 12.8090074477 463: 0.077330858890
464: 1 1 1 16 2.666667 1 0.19301733 1 0.19301733 2.04472052 1.8138221 0.028062644 2.07402897 1.83982092 4.3015961587 3.3849410173 464: 0.124199527814
465: 1 1 1 25 2.333333 1 0.24330854 1 0.24330854 1.76352142 1.6813238 0.040879172 1.80071125 1.71678026 3.2425610145 2.9473344470 465: 0.138202826892
466: 1 0 7 22 3.750000 1 0.39885072 1 0.39885072 1.22768226 1.3558526 0.101361860 1.29507093 1.43027663 1.6772087216 2.0456912253 466: 0.189180704377

There are 10 plots printed with the plot function in dx. Below are just two of them.
pTot(logmod)

Probability P;x leverage h; Probability P; x scaled change in Pearson chi-sq sAPxf‘
0.1<Pi=09 hjoc: x
hi oance Df'wa..:m"i:‘,?:im... area o« sA[%\,, radius = %B‘
hi=diagenal of hat matrix i
=]
s 24
8 B
]
sAPy?
g |
=
h; O
y 2
3 < 19
S
g T T
5
01 02 03
probability P;
g |
b T T T T T T T
0.10 0.15 020 0.25 0.30 0.35 0.40
probability P;

SAS

In SAS, a variety of diagnostics are available. | request a few here. The plot option on the proc logistic
line requests all of the possible plots, but this can be restricted if desired. Just a couple plots are printed
below.

proc logistic data=one order=data descending plots=all;

model wihheart=wisex wilactiv wicesd9 wineg /expb lackfit iplots;

output out=results predicted=pihat dfbetas=_all difchisq=chisq reschi=pearsonr
resdev=g2res;

run;

proc sgplot data=results;
histogram pearsonr;
density pearsonr;
run;
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Heart disease data from the LLSSE
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