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Abstract

Despite the sizable achievements obtained, the use of soft classi®ers is still limited by the lack of well-assessed and

adequate methods for evaluating the accuracy of their outputs. This paper proposes a new method that uses the fuzzy

set theory to extend the applicability of the traditional error matrix method to the evaluation of soft classi®ers. It is

designed to cope with those situations in which classi®cation and/or reference data are expressed in multimembership

form and the grades of membership represent di�erent levels of approximation to intrinsically vague classes. Ó 1999

Elsevier Science B.V. All rights reserved.
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1. Introduction

In many applications, it is desirable to have a
``soft'' classi®er that, for a given input pattern
vector, computes the ``likelihood'' that the pattern
lies in any of a set of possible classes. In general,
soft models for classi®cation are rooted in speci®c
representation frameworks within which the partial
belongingness of a given pattern to several cate-
gories at the same time is explicitly modeled (Bi-
naghi et al., 1996; Bouchon-Meunier et al., 1995).

Statistical classi®cation models interpret a given
pattern as fully contributing to a given class, and
the computed probabilities are an expression of the
frequency with which this full membership occurs.

In soft models for classi®cation, non-probabi-
listic uncertainty due to vagueness and/or ambi-

guity should be modeled as partial belongingness
to several categories at the same time (Klir and
Folger, 1988).

Various approaches may be used to derive a soft
classi®er. These approaches are based on speci®c
uncertainty representation frameworks such as the
fuzzy set theory, Dempster±Shafer theory and
certainty factors (Binaghi et al., 1996; Bloch, 1996).
In addition to the use of speci®c representation
frameworks, the output of ``hard'' classi®ers, such
as the maximum likelihood classi®er and the
multilayer perceptron, can be softened to derive
measures of the strength of class membership
(Schowengerdt, 1996; Wilkinson, 1996).

The most common solutions adopt a fuzzy set
framework (Pedrycz, 1990; Binaghi and Rampini,
1993; Ishibuchi et al., 1993). The apparatus of the
fuzzy set theory serves as a natural framework for
modeling the gradual transition from membership
to non-membership in intrinsically vague classes.
Here the assumption is that the classi®cation
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process is possibilistic in nature. The fuzzy set
framework introduces vagueness, with the aim of
reducing complexity, by eliminating the sharp
boundary dividing the members of a class from
non-members. In some situations, these sharp
boundaries may be arbitrary, or powerless, as they
cannot capture the semantic ¯exibility inherent in
complex categories. The grades of membership
correspond to the degree of compatibility with the
concepts represented by the class concerned: the
direct evaluation of grades with adequate mea-
sures is a signi®cant stage for subsequent decision-
making processes.

After the production of soft results, a hardening
process is sometime performed to obtain ®nal crisp
assignments to classes. This is done by applying
appropriate ranking procedures and decision rules
based on the inherent uncertainty and total
amount of information dormant within the data,
information that is lost when conventional classi-
®cations are considered.

The capacity of soft models has been proven
empirically in many applications (Foody, 1996;
Pal and Dutta Majumder, 1977).

However, despite the sizable achievements ob-
tained, the use of soft classi®ers is still limited by
the lack of well-assessed and adequate methods for
the evaluation of the accuracy of their outputs, an
element of primary concern, which must be con-
sidered an integral part of the overall classi®cation
procedure.

Accuracy is generally assessed empirically by
selecting a sample of reference data and comparing
their actual class assignments with those provided
by the automated classi®er. The measures of ac-
curacy employed in the evaluation of a classi®ca-
tion are usually those derived for application to
``crisp'' classi®cation outputs.

One of the most common ways of representing
accuracy assessment information is in the form of
an error matrix, or contingency table (Congalton,
1991). Using an error matrix to represent accuracy
has been recommended by many researchers, as it
provides a detailed assessment of the agreement
between the sample reference data and classi®ca-
tion data at speci®c locations, together with a
complete description of the misclassi®cations
registered for each category. In addition to the

valuable role of the full error matrix, a number of
descriptive and analytical statistical techniques
based on the error matrix have been proposed
(Congalton, 1991) to summarize information and
obtain accuracy measures that can meet speci®c
objectives. The most commonly used are the
``overall proportion of sample data classi®ed cor-
rectly'', user's and producer's accuracy, various
forms of kappa (j) coe�cients of agreement, the s
coe�cient (Stehman, 1997). Each of these provides
a di�erent summary of the information contained
in the error matrix. Because all these indexes su�er
from some limitation and no consensus has been
reached on the most suitable measure for a given
evaluation objective, the error matrix should be
considered the basic descriptive tool for organizing
and presenting accuracy information and should
be reported whenever feasible.

Unfortunately, in their present form the error
matrix and the derived accuracy measures are
appropriate only for hard classi®cation. The un-
derlying assumption of these conventional mea-
sures is that each element of sample data is
associated with only one class in the classi®cation
and only one class in the reference data. Conse-
quently, a class assignment is judged exactly right,
or exactly wrong.

In soft classi®cation, gradual membership in
several classes is allowed for each element of
sample data and assignments to classes are judged
correct, or incorrect in varying degrees. But to
apply conventional measures of classi®cation ac-
curacy, these soft classi®cation outputs must be
hardened and the comparison limited to crisp
reference data, causing a general loss of informa-
tion. The accuracy derived does not necessarily
re¯ect how correctly the strength of class mem-
bership has been partitioned among the classes.
Consequently, what is needed are soft accuracy
statements that can adequately keep track of the
uncertainty expressed in reference and classi®ca-
tion data by extending the notion of crisp match-
ing to that of soft matching.

This paper proposes a new evaluation method
which uses the fuzzy set theory to extend the ap-
plicability of the traditional error matrix method
to the evaluation of soft classi®ers. It is designed to
cope with those situations in which classi®cation
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and/or reference data are expressed in multimem-
bership form and the grades of membership
represent di�erent levels of approximation to in-
trinsically vague classes. The method assumes that
membership values in classes are known for the set
of reference data. Real applications may call for
di�erent approaches to the derivation of these
values. In the context of remote sensing image
classi®cation, for example, the grades of member-
ship in a given land cover class are correlated with
the percentages of coverage within pixels; the
membership values for the reference data are sub-
pixel land cover estimations of ground truth which
can be obtained by labeling procedures based on
images of varied resolution (Binaghi and Rampini,
1993). More generally, in supervised soft classi®-
cation, as classes are intrinsically vague, the
``hard'' labeling, traditionally used in the con-
struction of the reference data set, appears di�cult
to perform, arti®cial, or both. When dealing with
vague classes, experts may more naturally use
qualitative linguistic, scales to measure the
strengths of membership. Grades of membership
for reference data may then be obtained by de-
®ning these linguistic labels as labels of fuzzy sets
and applying appropriate elicitation techniques for
the de®nition of the corresponding membership
functions (Hall et al., 1986).

Basing the evaluation method on the error
matrix preserves the property of error ``localiza-
tion'' consisting in ``the capability of identifying
the contribution of each category relative to the
actual category as veri®ed in the reference data''
(Congalton, 1991). The derived descriptive tech-
niques are reformulated in the light of the fuzzy set
theoretical framework.

As with any fuzzy extension of traditional
concepts and operators, when the range of mem-
bership grades is restricted to the set �0; 1�, the
fuzzy error matrix performs as precisely as the
corresponding traditional matrix and is a clear
generalization of the latter.

2. Previous work

Various investigations have been made, and
several approaches suggested in the literature in an

attempt to overcome shortcomings in the evalua-
tion of soft classi®cation. Since soft classi®cation
output explicitly represents some kind of uncer-
tainty in class assignment, measures based on in-
formation uncertainty seem the most appropriate,
and particular emphasis has been placed on fuzzy
measures, measures of fuzziness and classical mea-
sures of uncertainty, such as Shannon entropy (Klir
and Folger, 1988).

Many authors, especially those operating in the
®eld of soft land-cover mapping, measure the
correlation between the proportions of corre-
sponding memberships of reference and classi®-
cation data by means of the coe�cient of
determination (r2) or of correlation (r).

Another, more empirical approach proposed
for the evaluation of soft classi®cation accuracy is
to simply measure the distance between classi®ca-
tion and reference data without referring to spe-
ci®c uncertainty management frameworks (Foody,
1996). ``Fuzzy distances'', ``fuzzy similarity rela-
tions'', may be also appropriate in this context
(Miyamoto, 1990).

Although all of the methods derived from these
approaches have something to o�er, none is at the
moment universally applicable. Advantages and
disadvantages coexist in each of them. Some
methods, such as entropy, are only appropriate for
situations in which the output of the classi®cation
is soft and the reference data are crisp. Inversely,
other methods can be applied in those situations in
which the uncertainty lies in reference data and not
in the classi®cation data (Gopal and Woodcock,
1994). Classical measures of uncertainty are rooted
in a statistical framework based on assumptions
that cannot be shared by soft classi®cation. These
measures may fail to appropriately represent the
accuracy of results produced in non-probabilistic
frameworks.

Measures of closeness may su�er from heuristic
solutions and lack of information concerning the
sampling design (Foody, 1996). Other, global ap-
proaches, such as the measure of determination, or
of correlation do not necessarily re¯ect the reality
of speci®c locations.

Finally, a limitation common to all these al-
ternative approaches which go beyond the error
matrix is that they do not provide ``location
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preserving'' accuracy. In a ``non-location preserv-
ing'' accuracy assessment where the amounts of a
category are considered without regard for the
location the accuracy assessment, if all the errors
balance out, yields very high and misleading re-
sults (Congalton, 1991).

This situation has convinced many authors to
organize hybrid evaluation strategies that con-
template the complementary use of a combination
of evaluation methods (Binaghi et al., 1998), but
this in turn means abandoning the advantages of
an organic, easily interpreted method that ex-
presses accuracy in the form of a single, or a few
meaningful indexes.

3. The fuzzy error matrix

An error matrix is a square array of integer
numbers set out in rows and columns that repre-
sent the number of sample units of the actual
category assigned to a particular category. The
columns usually represent the sample elements
assigned to corresponding actual categories (ref-
erence data), while the rows indicate the sample
elements assigned to corresponding classes by the
classi®er (classi®cation data). In this matrix the
diagonal elements show the number of sample el-
ements which have been classi®ed correctly, while
o�-the-diagonal elements represent misclassi®ca-
tions. We may formalize these concepts and the
matrix building procedure in terms of classical set
theory and derived set operations.

We let Rn be the set of reference data assigned to
class n, and Cm the set of classi®cation data as-
signed to class m, with 16 n6Q, 16m6Q and Q
as the number of classes. Rnf g and Cmf g form two
hard partitions of the sample data set X :

When dealing with conventional hard classi®-
cation (crisp reference and classi®cation data), Rn

and Cm are assumed to be crisp sets. The process
by which individuals from a given sample data set
X are determined to be either members or non-
members of the classes n and m is de®ned by the
characteristic or discrimination function of the sets
Rn and Cm,

lRn
: X ! 0; 1f g; �1a�

lCm
: X ! 0; 1f g: �1b�

For the given sets this function assigns values
lRn
�x� and lCm

�x�, respectively, to every x 2 X such
that

lRn
�x� � 1 iff x 2 Rn;

0 otherwise;

�
�2a�

lCm
�x� � 1 iff x 2 Cm;

0 otherwise:

�
�2b�

The element of the error matrix M in row m and
column n represents the cardinality of the inter-
section set Cm \ Rn:

M�m; n� � Cm \ Rnj j �
X
x2X

lCm\Rn
�x�; �3�

with the characteristic function:

lCm\Rn
�x� � 1 iff x 2 Cm ^ x 2 Rn;

0 otherwise:

�
�4�

The generic error matrix is shown in Table 1,
where pm;n represents the cardinality of the inter-
section set Cm \ Rn computed according to (3); pi�
and p�i are the total assignment to the ith class for
classi®cation and reference data, respectively.

Within the soft classi®cation context, the
vagueness conveyed by the grades of membership
in classes leads us to conceive classi®cation state-
ments as less exclusive than in conventional hard
classi®cation and to compare them in the light of
more relaxed, ¯exible conditions, which results in
degrees of matching.

In fact, a conventional statistical framework
and a fuzzy or soft classi®cation framework rep-
resent classi®cation outcomes, respectively, in the
form:

the probability that the pattern x belongs to ith
class is a where a 2 �0; 1�,
the grade of membership of pattern x in ith
class is a where a 2 �0; 1�:
The ®rst statement implies that the element x

belongs totally to ith class and contributes to the
entire set of patterns to a degree equal to a. The
gradual value must be interpreted as the frequency
of occurrence of this precise event, and the com-
parison must be made in terms of the total match
or mismatch on ®nal crisp memberships.
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The second statement conveys information on
the degree to which pattern x approximates the
prototype of ith class. Comparison too is a matter
of degrees.

Proceeding from these considerations, we now
attempt to extend the applicability of the error
matrix to the case of soft classi®cations. Since the
concept of multiple and partial class memberships
is fundamental to fuzzy set-based techniques, the
extension is made according to the fuzzy set theory
(Zadeh, 1965).

Within the soft classi®cation context Rn and Cm

may be considered fuzzy sets (we denote them as
~Rn and ~Cm) having the membership function

l ~Rn
: X ! 0; 1� �; �5a�

l ~Cm
: X ! 0; 1� �; �5b�

where 0; 1� � denotes the interval of real numbers
from 0 to 1 inclusive.

l ~Rn
�x� and l ~Cm

�x� represent the gradual mem-
bership of the sample element x in classes n and m
as indicated in the reference and classi®cation data,
respectively. ~Rn

� 	
and ~Cm

� 	
form two fuzzy par-

titions of the sample data set X . In fuzzy
classi®cation the condition of orthogonality or sum-
normalization is sometimes introduced (exempli®ed
for the reference data set:

PQ
n�1 lRn

�x� � 1), re-
quiring that membership functions sum up to one
for each element of the sample data set (Pedrycz,
1990).

We use fuzzy set operators within the error
matrix building procedure to provide a fuzzy error
matrix ~M . The assignment to the element ~M�m; n�
involves the computation of the degree of mem-
bership in the fuzzy intersection set ~Cm \ ~Rn.

For the intersection operation, several di�erent
classes of functions have been proposed in the
literature (Dubois and Prade, 1985), and each can
be considered in our context. However, despite the
variety of fuzzy set operators, the standard opera-
tions of the fuzzy set theory still possess particular
signi®cance (Klir and Folger, 1988). We use here
the ``min'' operator introduced in the original
formulation of the theory of fuzzy sets (Zadeh,
1977):

l ~Cm\ ~Rn
�x� � min�l ~Cm

�x�; l ~Rn
�x��: �6�

The assignment to element ~M�m; n� is an ex-
tension of Eq. (4).

The cardinality of the fuzzy set intersection
~Cm \ ~Rn provides the global value of the generic
element in row m and column n computed on the
overall sample data set:

~M�m; n� � ~Cm \ ~Rn

��� ��� �X
x2X

l ~Cm\ ~Rn
�x�: �7�

In the case of multimembership, the generic el-
ement pm;n in Table 1 represents the cardinality of
the intersection set ~Cm \ ~Rn computed according to
(7). The element pm;n in the fuzzy error matrix
denotes a crisp number, due to the fact that in (7)
scalar cardinality is applied to the fuzzy set
~Cm \ ~Rn. As in the conventional case, pi� and p�i

represent the total grades of membership assigned
to the ith class for classi®cation and reference data,
respectively.

The fuzzy error matrix can be used as the start-
ing point for descriptive techniques, in the same
way as the conventional error matrix. The simplest
index in both cases is overall accuracy (OA). This is
conventionally computed by dividing the sum of

Table 1

Error matrix with pmn representing the cardinality of the intersection between classi®cation data (rows) and reference data (columns)

Reference data Total assignment

1 2 � � � Q

Classi®cation data

1 p11 p12 � � � p1q p1�
2 p21 p22 � � � p2q p2�
..
. ..

. ..
. � � � ..

. ..
.

Q pq1 pq2 � � � pqq pq�

Total assignments

p�1 p�2 � � � p�q
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the major diagonal by the total number of sample
elements. In the fuzzy case we proceed by dividing
the sum of the major diagonal by the total of
grades of membership found in reference data,
interpreting OA as a measure of the total match
between reference and classi®cation data. When
the condition of orthogonality holds, the total of
grades of membership in the reference data coin-
cides with the total number of sample elements. As
in the conventional case, the accuracy of the in-
dividual categories is computed by dividing the
corresponding element of the major diagonal by
the total of grades of membership found in refer-
ence and classi®cation data in either the corre-
sponding column, or the corresponding row. For
each category we obtain the producerÕs accuracy
(PA), related to errors of omission, together with
the userÕs accuracy (UA), related to errors of
commission. All these measures, OA, PA and UA,
are limited to the range �0; 1� and assume the value
of 1 in the case of a complete match between the
gradual membership of reference and of classi®-
cation data.

Some very simple examples su�ce to illustrate
the e�ects of applying the above operators to the
construction of the error matrix (operating in
multimembership it is possible to build a matrix
for one sample element). The error matrices in
Table 2 compare the class assignment provided in
~R and that provided in ~C for an element x and for
a three class ( q1; q2; q3) problem.
· Case a:

l ~R1
�x� � 0:4; l ~R2

�x� � 0:4; l ~R3
�x� � 0:4;

l ~C1
�x� � 0:4; l ~C2

�x� � 0:4; l ~C3
�x� � 0:4:

· Case b:

l ~R1
�x� � 0:4; l ~R2

�x� � 0:4; l ~R3
�x� � 0:4;

l ~C1
�x� � 0:2; l ~C2

�x� � 0:4; l ~C3
�x� � 0:4:

· Case c:

l ~R
1
�x� � 0:4; l ~R2

�x� � 0:4; l ~R3
�x� � 0:4;

l ~C1
�x� � 0:6; l ~C2

�x� � 0:4; l ~C3
�x� � 0:4:

Table 2

Fuzzy error matrices with accuracy descriptive measures for the three cases of (a) coincidence, (b) underestimation and (c) overesti-

mation

Reference data Overall accuracy (OA)

Class data ~R1
~R2

~R3 Total grades ProducerÕs acc. User's acc.

(a) Perfect matching (OA� 1)

l ~R1
�x� � 0:4; l ~R2

�x� � 0:4; l ~R3
�x� � 0:4

l ~C1
�x� � 0:4; l ~C2

�x� � 0:4; l ~C3
�x� � 0:4

~C1 0.4 0.4 0.4 0.4 PA1� 1 UA1� 1
~C2 0.4 0.4 0.4 0.4 PA2� 1 UA2� 1
~C3 0.4 0.4 0.4 0.4 PA3� 1 UA3� 1

Total grades 0.4 0.4 0.4

(b) Underestimation (OA� 0.833)

l ~R1
�x� � 0:4; l ~R2

�x� � 0:4; l ~R3
�x� � 0:4

l ~C1
�x� � 0:2; l ~C2

�x� � 0:4; l ~C3
�x� � 0:4

~C1 0.2 0.2 0.2 0.2 PA1� 0.50 UA1� 1
~C2 0.4 0.4 0.4 0.4 PA2� 1 UA2� 1
~C3 0.4 0.4 0.4 0.4 PA3� 1 UA3� 1

Total grades 0.4 0.4 0.4

(c) Overestimation (OA� 1)

l ~R1
�x� � 0:4; l ~R2

�x� � 0:4; l ~R3
�x� � 0:4

l ~C1
�x� � 0:6; l ~C2

�x� � 0:4; l ~C3
�x� � 0:4

~C1 0.4 0.4 0.4 0.6 PA1� 1 UA1� 0.67
~C2 0.4 0.4 0.4 0.4 PA2� 1 UA2� 1
~C3 0.4 0.4 0.4 0.4 PA3� 1 UA3� 1

Total grades 0.4 0.4 0.4
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In the fuzzy set classi®cation framework mem-
bership grades are not necessarily constrained to
sum up to 1 and represent the degree of compati-
bility of the element with each class.

Examining the error matrix values, we see that
even when gradual memberships coincide for a
given element of reference and classi®cation data,
non-null degrees of mismatch are still contem-
plated and represented in the matrix in the o�-the-
diagonal cells.

The fuzzy accuracy measures computed for the
three cases of a, b and c are reported in Table 2. In
case a the individual grades coincide, implying that
the measures OA, PA and UA are equal to 1 for all
classes. In case b a condition of underestimation
is introduced; the OA is less than 1, as is the
PA corresponding to the underestimated class
(PA1� 0.50).

In case c a condition of overestimation is in-
troduced. Both the error matrix and the OA values
are the same as those of case a: case c can be
distinguished from case a only by evaluating the

UA, which keeps track of the overestimation
condition.

In Table 3 the fuzzy error matrices and derived
accuracy measures are shown for cases in which
the condition of orthogonality is introduced: three
cases, respectively, of coincidence (a), underesti-
mation (b) and overestimation (c) are considered.

When the orthogonality hypothesis holds, both
the fuzzy error matrix and the OA can distinguish
situations of coincidence and overestimation. The
OA is the same (OA� 0.9) in both cases b and c
consistent with the interpretation of OA as the
``overall proportion of grades classi®ed correctly'':
the amount of underestimated grades in case b is
equal to the amount of overestimated grades in
case c. Category measures PA and UA capture the
corresponding errors of omission and commission
in cases b and c, respectively.

The results obtained in these hypothetical ex-
amples demonstrate that the accuracy measures
derived from the fuzzy error matrix are an exten-
sion of the conventional measures based on crisp

Table 3

Fuzzy error matrices with accuracy descriptive measures for the three cases of (a) coincidence, (b) underestimation and (c) overesti-

mation, assuming the orthogonality hypothesis

Reference data Overall accuracy

Class data ~R1
~R2

~R3 Total grades ProducerÕs acc. UserÕs acc.

(a) Perfect matching (OA� 1)

l ~R1
�x� � 0:7; l ~R2

�x� � 0:2; l ~R3
�x� � 0:1

l ~C1
�x� � 0:7; l ~C2

�x� � 0:2; l ~C3
�x� � 0:1

~C1 0.7 0.2 0.1 0.7 PA1� 1 UA1� 1
~C2 0.2 0.2 0.1 0.2 PA2� 1 UA2� 1
~C3 0.1 0.1 0.1 0.1 PA3� 1 UA3� 1

Total grades 0.7 0.2 0.1

(b) Underestimation (OA� 0.9)

l ~R1
�x� � 0:7; l ~R2

�x� � 0:2; l ~R3
�x� � 0:1

l ~C1
�x� � 0:6; l ~C2

�x� � 0:3; l ~C3
�x� � 0:1

~C1 0.6 0.2 0.1 0.6 PA1� 1 UA1� 0.86
~C2 0.3 0.2 0.1 0.3 PA2� 0.67 UA2� 1
~C3 0.1 0.1 0.1 0.1 PA3� 1 UA3� 1

Total grades 0.7 0.2 0.1

(c) Overestimation (OA� 0.9)

l ~R1
�x� � 0:7; l ~R2

�x� � 0:2; l ~R3
�x� � 0:1

l ~C1
�x� � 0:8; l ~C2

�x� � 0:1; l ~C3
�x� � 0:1

~C1 0.7 0.2 0.1 0.8 PA1� 0.87 UA1� 1
~C2 0.1 0.1 0.1 0.1 PA2� 1 UA2� 0.50
~C3 0.1 0.1 0.1 0.1 PA3� 1 UA3� 1

Total grades 0.7 0.2 0.1
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matches and mismatches: they register the gradual
strengths in class assignment and express the way
in which the strength of class membership is par-
titioned between the classes and how closely this
represents the partitioning of class membership
found in the reference data. The conventional
question of ``how coincident are classi®cation and
reference data'' must be reformulated as ``how
close are the grades in class assignments for clas-
si®cation and reference data''.

From a theoretical point of view, the compari-
son of grades of membership for classi®cation and
reference data could address another, independent
question: ``at what level of fuzziness/vagueness is
the gradual matching performed''. Consider for
example the following cases:

· Case a:

l ~R1
�x� � 0:4; l ~R2

�x� � 0:4; l ~R3
�x� � 0:4;

l ~C1
�x� � 0:4; l ~C2

�x� � 0:4; l ~C3
�x� � 0:4:

· Case b:

l ~R1
�x� � 0:8; l ~R2

�x� � 0:8; l ~R3
�x� � 0:8;

l ~C1
�x� � 0:8; l ~C2

�x� � 0:8; l ~C3
�x� � 0:8:

The global and category measures are the same for
the two cases and are all equal to 1. However, the
data in case b are less fuzzy than in case a. The
level of fuzziness can be quanti®ed by introducing
the index of fuzziness (Klir and Folger, 1988) de-
®ned for both classi®cation and reference data in
terms of the metric distance of fuzzy sets ~Ri and ~Ci

from the nearest crisp set S, if any.
As an example, for ~Ri we have

lS�x� �
0 if l ~Ri

�x�6 1
2
;

1 if l ~Ri
�x� > 1

2
:

(
�8�

Using the Hamming distance, we express the
normalized index of fuzziness (IF) of ~Ri, IF~Ri

, by
the function

IF ~Ri
�
P

x2X l ~Ri
�x� ÿ lS�x�

�� ��
~Ri

��� ��� : �9�

To have a global measure of fuzziness for the
overall reference and classi®cation data sets we

introduce a mean index of fuzziness (IF) which,
exempli®ed for the reference data set, has the fol-
lowing form:

IF ~R �
PQ

i�1 IF ~Ri

Q
: �10�

The quanti®cation of the levels of fuzziness of
the classi®cation and reference data can serve as a
concise indication of the behavior of a classi®er
and introduce additional criteria of evaluation
particularly useful in comparative studies, as
shown in the following example.

3.1. A real example

To verify the applicability of the method in a
real domain and evaluate the e�ectiveness of the
measures proposed when applied to real data sets,
where cumulative and compensatory e�ects occur,
we conducted a remote sensing study on a highly
complex real scene of the Venice lagoon (Italy)
where water and wetland merge into one another,
at sub-pixel level, in an intricate and complex
pattern. A Landsat TM image (30 m ground res-
olution) of the Venice lagoon (Fig. 1) was selected
to study and compare the capabilities of both the
fuzzy and neural network classi®ers in estimating
the mixture of water and wetland. The study area
was a 15 km�12 km rectangular window in which
water and wetland mainly represented the lagoon
environment and were the land cover types of in-
terest. Two other class vegetation and bare-soil
were also present in the mainland part of the study
area.

In this context the gradual membership values
of a given pixel in land cover classes were drawn
from the proportions of water and wetland
occurring within that pixel. The condition of or-
thogonality was therefore automatically intro-
duced. The membership grades of the reference
data set were then generated with a speci®c pro-
cedure consistent with the above interpretation:
color aerial photographs on a scale of 1:20 000
taken at the same time as the satellite overpass,
and covering a part of the scene were digitized at
10 m ground resolution and geometrically regis-
tered to the satellite image using the nearest
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Fig. 1. North-eastern part of Venice lagoon showing the complex environment of the transitional zones between the mainland and the

open sea, represented by wetlands. Landsat Thematic Mapper image of 8 May 1987 (RGB: TM3, TM2, TM1).
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neighborhood resampling function. This allowed
us to produce sub-pixel land cover information in
terms of a 3-by-3 pixel grid. Reference data, in-
cluding pure pixels (full membership in one land
cover class) and water and wetland mixed pixels
(gradual memberships in water and wetland), were
produced for training and testing during a ma-
chine-aided session by a photointerpreter who as-
signed the land cover class proportions within the
TM pixels, working from the corresponding 3-by-3
pixel grid of the aerial photograph (Binaghi et al.,
1999).

The error matrices and the accuracy measures
derived for the fuzzy-statistical and neural classi-
®ers are shown in Table 4. To simplify the inter-
pretation of the data in the error matrices and
rapidly identify the allocation of gradual mem-
berships in the classes involved in the mixture, that
is water and wetland, the columns and rows re-
lated to vegetation and bare-soil have been com-
bined in a single column and row labeled other.
The fuzzy error matrix and accuracy measures for
the ideal case in which reference data and classi-
®cation data would compare exactly are stated ®rst

to facilitate the interpretation of the new measures.
The OA of the neural classi®er (OA� 0.74) is
higher than that of the fuzzy statistical classi®er
(OA� 0.59). Examining the category measures, we
note that the producer accuracy of the class water
is very low for the fuzzy statistical classi®er
(PA1� 0.22). This indicates a consistent underes-
timation of the class water in favor of the class
wetland which is consequently signi®cantly over-
estimated (UA2 � 0:57). Looking at the matrix
values, we see that both the classi®ers have mis-
classi®ed pixels: the fuzzy statistical classi®er lim-
ited the misclassi®cation between the two classes
involved in the mixture water and wetland, the
neural classi®er assigns degrees of membership
either to the class other. These results, obtained by
analyzing the accuracy measures, are consistently
re¯ected in the indexes of fuzziness. There is less of
a di�erence between the IF values of the reference
data and classi®cation data for the neural classi®er
(D � �25%) than for the fuzzy classi®er
(D � ÿ84%). The IF provides additional infor-
mation about the behavior of the two classi®ers.
The low IF values for the fuzzy statistical classi®er

Table 4

Comparison of the results obtained from two classi®ers, neural network and fuzzy statistical, in the pixel unmixing problem between

water and wetland classes for a satellite image of the Venice lagoon

Reference data Overall accuracy Index of fuzziness

Class

data

Water Wetland Other Total

grades

ProducerÕs
acc.

UserÕs acc. Per class IFs

Complete matching (OA� 1) IF ~R � 0:155, IF ~C � 0:155
~C1 111.58 74.36 0 111.58 PA1� 1 UA1� 1 IF ~R1

� 0:310 IF ~C1
� 0:310

~C2 74.36 128.53 0 128.53 PA2� 1 UA2� 1 IF ~R2
� 0:309 IF ~C2

� 0:309
~C3 0 0 0 0 PA3�# UA3�# IF ~R3

�# IF ~C3
�#

Total

grades

111.58 128.53 0

Neural network classi®cation (OA� 0.74) IF ~R � 0:155, IF ~C � 0:194
~C1 90.78 86.59 0 116.25 PA1� 0.81 UA1� 0.78 IF ~R1

� 0:310 IF ~C1
� 0:324

~C2 71.48 87.16 0 97.12 PA2� 0.68 UA2� 0.90 IF ~R2
� 0:309 IF ~C2

� 0:341
~C3 26.34 26.21 0 26.75 PA3�# UA3� 0 IF ~R3

�# IF ~C3
� 0.055

Total

grades

111.58 128.53 0

Fuzzy statistical classi®cation (OA� 0.59) IF ~R � 0:155, IF ~C � 0:025
~C1 24.34 20.88 0 35.34 PA1� 0.22 UA1� 0.69 IF ~R1

� 0:310 IF ~C1
� 0:051

~C2 97.12 117.53 0 204.66 PA2� 0.91 UA2� 0.57 IF ~R2
� 0:309 IF ~C2

� 0:051
~C3 0 0 0 0 PA3�# UA3�# IF ~R3

�# IF ~C3
�#

Total

grades

111.58 128.53 0
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indicate that gradual class assignments tend de®-
nitely towards the extremes, 0 and 1, of the
membership scale. The neural network classi®er,
better preserves the fuzziness of the mixed data.
These results are con®rmed by the visual inspec-
tion performed by photointerpreters who were
experts of the scene of the soft maps produced by
the two classi®ers (Fig. 2).

Alternative evaluation procedures have been
developed for this application in order to demon-
strate the value and the advantages of the pro-
posed measures as compared with other
approaches. Table 5 shows the standard error
matrices for the neural and fuzzy-statistical clas-
si®ers. The matrices have been constructed by
hardening classi®cation and reference data sets,
and then performing traditional crisp matches.
The conventional accuracy measures register val-
ues consistent with those of the new measures.
However the di�erences in accuracy between the
classi®ers are reduced signi®cantly: their OAs are
quite similar. The loss of information on the dis-
tribution of the gradual strengths in class assign-
ments has led to misleading results.

For a second comparison we applied the stan-
dard errors of estimate to the results obtained by
the neural and fuzzy-statistical classi®ers. This
evaluation procedure preserves the gradual mem-
bership of the data in the classes: substantially
what it does measure is the di�erences in the al-
location of gradual memberships of reference data
(yr) and classi®cation data (yc) in classes:

Se �
������������������������������Pn

i�1�yr
i ÿ yc

i �2
nÿ 2

s
; �11�

where n is the cardinality of the data set. If n
represents the number of sample data belonging to
a jth class, we obtain the standard error of estimate
per class Sej .

This analysis has con®rmed the superiority of
the neural classi®er in quantifying land cover
proportions in mixed pixels. Table 5 lists the val-
ues, which for the neural network are in all cases
half those for the fuzzy classi®er. With this eval-
uation tool the di�erences between the two classi-
®ers are once again signi®cant, but, in contrast
with the new evaluation method we cannot localize

the misclassi®cation, having lost information re-
garding omissions and commissions at the category
level.

4. Conclusions

The new evaluation method we propose for soft
classi®ers is based on the fuzzy set theory and is a
generalization of the traditional confusion matrix
method. It is designed for those situations in which
classi®cation and/or reference data are expressed
in multimembership form. Even when the mem-
bership grades of classi®cation and/or reference
data are crisp, i.e. restricted to the set �0; 1�, the
method continues to be applicable. When both the
reference and classi®cation data are crisp, the new
method performs precisely like the traditional er-
ror matrix method. We have demonstrated the
suitability of fuzzy sets in accuracy assessment by
de®ning a fuzzy error matrix and deriving global
and category measures.

The approach has been illustrated using simple
examples of the e�ects of applying the above
measures. An application in the evaluation of re-
mote sensing image classi®cation has been re-
ported to illustrate the tractability and the
e�ectiveness of the new approach in a real domain.
To better demonstrate their advantages, the new
evaluation tools have been compared with other,
conventional approaches. The results show that
the accuracy information the proposed procedure
provides, consistently re¯ects how correctly the
strength of class membership is partitioned among
classes.

As the method is based on the error matrix, it
inherits the advantages and disadvantages of this
evaluation tool.

The important property of localizing misclassi-
®cation errors, on the basis of the contributions
per-class distributed within the matrix and sum-
marized in the category measures, is maintained.
The comparative analysis performed shows that
the OA index obtained from the fuzzy error ma-
trix, which keeps track of the multimembership
grades, provides a more appropriate measure of
accuracy than the conventional OA values based
on hardened data. Although, as illustrated in the
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Fig. 2. Venice lagoon study area: maps of component proportions for the classes water and wetland obtained by the fuzzy statistical

and neural network classi®cations. The grey levels represent the percentages of the proportions within each pixel: black to

white� 0±100%.
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examples, when the condition of orthogonality is
relaxed, the OA measure may not be able to rep-
resent situations of overestimation, these are,
however, always correctly represented in the cor-
responding category measures.

As in the conventional procedure, neither the
overall or the category indexes give equal consid-
eration to the information contained in all of the
cells of the error matrix.

At present, the best course of action to obtain
all the accuracy information is to support the in-
terpretation of the descriptive measures with a
detailed inspection of the full fuzzy error matrix.

The proposed measure of fuzziness, computed
in terms of index of fuzziness, has been proved a
useful tool for investigating the behavior of a
classi®er in partitioning gradual class assignment,
providing concise evaluation criterion that is es-
pecially useful in comparative studies and that can
otherwise be obtained only by prolonged analysis
(Binaghi et al. 1999).

We now plan to develop other measures derived
from the fuzzy error matrix to keep track of all the
information contained in the matrix, so that, in
computing and comparing the various accuracy
measures, we can examine the nature of the dif-
ferences.

References

Binaghi, E., Rampini, A., 1993. Fuzzy decision making in the

classi®cation of multisource remote sensing data. Optical

Engineering 6, 1193±1203.

Binaghi, E., Rampini, A., Brivio, P.A., Schowengerdt, R.A.

(Eds.), 1996. Special Issue on Non-conventional Pattern

Analysis in Remote Sensing. Pattern Recognition Letters 17

(13).

Binaghi, E., Brivio, P.A., Ghezzi, P., Rampini, A., 1999.

Investigating the behaviour of neural and fuzzy-statistical

classi®ers in sub-pixel land cover estimations. Canad.

J. Remote Sensing, to appear.

Bloch, I., 1996. Information combination operators for data

fusion: a comparative review with classi®cation. IEEE

Trans. Systems Man. Cybernet. 26, 52±67.

Bouchon-Meunier, B., Yager, R., Zadeh, L.A. (Eds.), 1995.

Fuzzy Logic and Soft Computing. World Scienti®c, Singa-

pore.

Congalton, R.G., 1991. A review of assessing the accuracy of

classi®cation of remotely sensed data. Remote Sensing

Environ. 37, 35±46.

Dubois, D., Prade, H., 1985. A review of fuzzy set aggregation

connectives. Inform. Sci. 36, 85±121.

Foody, G.M., 1996. Approaches for the production and

evaluation of fuzzy land cover classi®cations from remote-

ly-sensed data. Internat. J. Remote Sensing 17 (7), 1317±

1340.

Gopal, S., Woodcock, C., 1994. Theory and methods for

accuracy assessment of thematic maps using fuzzy sets.

Photogrammetric Engineering & Remote Sensing 60 (2),

181±188.

Table 5

Standard error matrices, obtained with hardening, for neural network and fuzzy statistical classi®ers in the pixel unmixing problem

between water and wetland classes for a satellite image of the Venice lagoon and standard errors of estimate between actual versus

predicted land cover proportions

Reference data Total

assignments

Overall accuracy

Class data Water Wetland Other ProducerÕs acc. UserÕs acc.

Neural network classi®cation (OA� 0.64)
~C1 69 51 0 120 PA1� 0.67 UA1� 0.57
~C2 33 86 0 119 PA2� 0.63 UA2� 0.72
~C3 1 0 0 1 PA3�# UA3� 0

Total assignments 103 137 0

Fuzzy statistical classi®cation (OA� 0.61)
~C1 21 12 0 33 PA1� 020 UA1� 0.64
~C2 82 125 0 207 PA2� 0.91 UA2� 0.60
~C3 0 0 0 0 PA3�# UA3�#

Total assignments 103 137 0

Classi®cation Network Fuzzy

Standard errors of estimate

Water 24.85 46.42

Wetland 26.68 46.39

E. Binaghi et al. / Pattern Recognition Letters 20 (1999) 935±948 947



Hall, L.O., Szabo, S., Kandel, A., 1986. On the derivation of

memberships for fuzzy sets in expert systems. Inform. Sci.

40, 39±52.

Ishibuchi, H., Nozaki, K., Tanaka, H., 1993. E�cient fuzzy

partition of pattern space for classi®cation problems. Fuzzy

Sets and Systems 59, 295±304.

Klir, J.G., Folger, T.A., 1988. Fuzzy Sets, Uncertainty and

Information. Prentice Hall, Englewood Cli�, NJ.

Miyamoto, S., 1990. Fuzzy Sets in Information Retrieval and

Cluster Analysis. Kluwer Academic Publishers, The Neth-

erlands.

Pal, S.K., Dutta Majumder, D., 1977. Fuzzy sets and decision-

making approaches in vowel and speaker recognition. IEEE

Trans. Systems Man. Cybernet. 7, 625±629.

Pedrycz, W., 1990. Fuzzy sets in pattern recognition: method-

ology and methods. Pattern Recognition 23, 121±146.

Schowengerdt, R.A., 1996. On the estimation of spatial-spectral

mixing with classi®er likelihood functions. Pattern Recog-

nition Letters 17, 1379±1387.

Stehman, S.V., 1997. Selecting and interpreting measures of

thematic classi®cation accuracy. Remote Sensing Environ.

62, 77±89.

Wilkinson, G.G., 1996. Classi®cation algorithms ± where next?.

In: Binaghi, E., Brivio, P.A., Rampini, A. (Eds.), Soft

Computing in Remote Sensing Data Analysis. Series in

Remote Sensing, Vol. 1, pp. 93±100.

Zadeh, L.A., 1965. Fuzzy sets. Information and Control 8, 338±

353.

Zadeh, L.A., 1977. Fuzzy sets as a basis for a theory of

possibility. Fuzzy Sets and Systems 1, 3±28.

948 E. Binaghi et al. / Pattern Recognition Letters 20 (1999) 935±948


