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Abstract

Classification results using texture analysis is presented for forest fire smoke from satellite remote sensing data.

Texture analysis is carried out for normalized difference images calculated from visible and thermal infrared images of

the Indonesian forest fire in 1997. Smoke regions are identified by assuming threshold values for the resulting texture

feature as well as for radiances in the original and difference images. It is found that when the thresholds are chosen

appropriately for GMS visible and infrared spin scan radiometer, 94% pixels exhibit agreement between the

classification results using the texture analysis and the supervised Euclidean classification. Agreement is found for 96%

pixels in mutual verification using the VISSR image and a concurrent NOAA advanced very high resolution radiometer

image. A correlation coefficient of 0.91 is obtained between the results from the two sensors in the variation of the

number of smoke pixels accumulated for 12 days in September 1997: Additionally, it is confirmed that as the threshold

value of the texture feature is increased, the variation range of the aerosol optical thickness is also increased. As a

whole, this study indicates that texture analysis provides quite reasonable results in the smoke detection when

appropriately combined with the spectral information. r 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Indonesian forest fire; Unsupervised classification; Multi spectrum classification; Aerosol optical thickness; GMS VISSR;
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1. Introduction

Aerosols play an important role in the radiation

budget of the earth. Although forest fires in the tropical

region are basically local phenomena, they contribute

also to the change of the atmosphere of the regional or

sometimes even global scale by generating a large

amount of aerosol particles (Charlson et al., 1992;

Taylor and Penner, 1994). Satellite observation of forest

fires is quite useful, since information on smoke aerosols

can be obtained for a wide area nearly instantaneously.

In this paper, we describe a method to extract regions

that are characterized by high concentrations of smoke

aerosols. Conventional methods such as the multi-level

slicing and the most-likelihood method have usually

been used to classify pixels in satellite images (Lubin and

Morrow, 1998; Nair et al., 1998; Berendes et al., 1999).

When the object to be analyzed is distributed disper-

sively, on the other hand, the use of texture analysis

combined with multi-spectral information has been

proved to be valuable (Weszka et al., 1976). Texture

analysis is capable of exploiting the spatial features more

directly and more systematically than other statistical

methods such as that based on the coefficient of

variation. A variety of quantities describing spatial

features have already been derived and discussed in the

literature. Clouds have often been analyzed using

satellite remote sensing data. For example, Ebert
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(1987) described a pattern recognition technique for

distinguishing cloud types in the polar regions, Kuo et al.

(1988) applied the method to the detection of high cirrus

clouds, and Key (1990) used it to discriminate between

clouds and snow/ice regions on the ground.

Christopher et al. (1996) analyzed the Amazon

biomass burning by means of texture analysis. They

extracted possible burning areas by combining spectral

signatures in visible and thermal-infrared images, and

subsequently choosing the portions that were character-

ized by uniform values of reflected radiance (i.e. showing

no spatial pattern expected for ground surfaces). This

latter extraction was done by texture analysis to remove

the pixels exhibiting the reflectance from ground

surfaces. The framework of our present work is basically

similar to that of Christopher et al. (1996), but with

more quantitative examination of the texture analysis

applied to smoke detection.

The purpose of the present paper is twofold. First,

taking the Indonesian forest fire in 1997 as a case study,

we implement automatic smoke extraction on two types

of satellite images with different spatial resolutions. The

results of classification are compared with each other as

well as with that of the visual classification. Second, we

examine the aerosol optical thickness for regions that

are classified as homogenous in the texture analysis to

study the extent to which the aerosol optical thickness is

actually uniform. This is accomplished by separately

deriving the optical thickness over the sea area from

relevant satellite images. Appropriate images of the

visible and infrared spin scan radiometer (VISSR) of the

GMS-5 satellite and the advanced very high resolution

radiometer (AVHRR) of the NOAA-14 satellite are

employed for the study of smoke extraction. The latter

images are used to calculate the aerosol optical

thickness, because of the availability of the sensor

calibration.

Satellite data have so far often been used for the

analysis of forest fires, such as those in Amazon, Africa,

and Indonesia. In these previous investigations, princi-

pal interests consisted in the derivation of optical and

chemical properties of smoke aerosols (Kaufman and

Holben, 1996; Holben et al., 1996; Liousee et al., 1997)

and estimation of the radiation forcing on the basis of

their optical characteristics (Kaufman et al., 1990; Prins

and Menzel, 1994). These objectives are different from

the viewpoint of the present paper, i.e. mutual validation

of the smoke-extraction results and the study of the

relationship between the textural feature value and the

aerosol column amount.

This paper is organized as follows. In Section 2.1

smoke areas are extracted by texture analysis of the

difference image between the GMS-5 VISSR visible

image (0.5–0:9 mm band) and infrared image (10.5–

11:5 mm band). Also, we prepare a reference image by

means of supervised classification using the standard

Euclidean distance. Comparison between the automated

(textural) and visual (supervised) results is made in

Section 3.1. In Section 2.2 textural analysis is applied to

the difference image between the channel 1 (580–

680 nm) and channel 4 (10.3–11:3 mm) images of

NOAA-14 AVHRR. This result with a high spatial

resolution ð1:1 kmÞ is compared with the VISSR case

(5 km resolution) in Section 3.2. In Section 2.3 we derive

the aerosol optical thickness over the sea area from the

AVHRR channel 1 image. This result is discussed in

Section 3.3 in relation to the threshold value assigned to

the textural mean. In Section 3:4 we discuss the

information obtained by combining the textural feature

value and the aerosol optical thickness, and in Section

3.5 the utility of the texture feature to detect inhomo-

geneity in the smoke detection.

2. Methodology

2.1. Smoke detection in GMS VISSR images

2.1.1. Non-supervised classification using texture analysis

We adopt the gray level difference vector (GLDV) in

order to make the calculation simpler than the case

using the co-occurrence matrix (Weszka et al., 1976;

Christopher et al., 1996). The following textural mean is

employed to evaluate the homogeneity of pixel radiance

in each window (9 � 9 pixels) scanned in an image:

fmðr; yÞ ¼
XNg�1

n¼0

nPgðnÞry=Ng; ð1Þ

where r and y denote the distance and directional angle

between two pixels, Ng is the division in the radiance

level, and Pg is the probability that the difference of the

radiance between the two pixels becomes n: The textural

feature fmðr; yÞ ð0ofmðr; yÞo1Þ represents the variance

of pixel radiance in the window, approaching 0 when the

homogeneity is high.

The following parameter, DGMS ð�1pDGMSp1Þ; is

calculated for each pixel, and the resulting image is

subjected to texture analysis:

DGMS ¼ ð4ug � vgÞ=ð4ug þ vgÞ; ð2Þ

where ug is the digital number (DN) of the visible

channel, and vg that of the infrared channel. The DN of

the visible channel is multiplied by a factor of 4 so that

its variation range matches with that of the infrared

channel. We define a texture-analyzed image (TAI) as

what we obtain by applying Eq. (1) to this difference

image. We performed the actual data processing by

transforming the TAI into an 8-bit image: for simplicity,

however, we employ the numerical value that is directly

calculated by Eq. (2) in the following analysis.
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Regions with radiance contributions from fire smoke

are detected in the following manner. First we make use

of the spectral feature that fire smoke would exhibit.

Since its temperature is relatively high and it shows high

reflectivity in the central part of the visible wavelength,

the value of DGMS in Eq. (2) is considered to be large

(Christopher et al., 1996; Ackerman and Chang, 1992;

Rao et al., 1997). Furthermore, setting a lower limit to

the temperature detected by the infrared sensor attains

reasonable discrimination of the smoke against clouds.

Then, the smoke region is characterized by the

uniformity of the textural feature in Eq. (1) in the

window. Combined together, these three conditions are

expressed as

DGMS > 0:2;

vgo145;

fmðr; yÞodGMS: ð3Þ

In the first condition, the threshold value (0.2) is

empirically determined to distinguish between the smoke

and background (land and sea) surfaces (see also Fig. 6

below). In the second condition, it should be noted that

a smaller value of vg indicates a higher brightness

temperature (vgo145 means that brightness temperature

is higher than 280 K). In the third, the threshold value

dGMS is changed to examine how it affects the smoke

retrieval. We define a smoke-extracted image (SEI) by

what we obtain by applying these conditions to the TAI

and transforming it into a binary image. The resulting

image will be shown and discussed later in Section 3.1.1.

2.1.2. Supervised classification with standard Euclidean

distance

In this subsection, we describe the method to visually

classify the GMS image by means of the supervised

classification. We define the classes as listed in Table 1,

and each training area is sampled as exemplified in

Fig. 1. Originally this figure is a false color composite

obtained by assigning red and green to the GMS visible

channel and blue to its thermal infrared channel: as a

result, the sea, vegetation, cloud, and smoke areas

become blue, green, white, and yellow, respectively. In

particular, the smoke areas (AG and AO) were sampled

on Kalimantan and surrounding sea areas. The vegeta-

tion areas were determined with the help of geographical

information. We analyzed an image per day in

September 1997; the local time was fixed at 11:00 in

agreement with the overpass of the NOAA satellite. A

total of 30 images were analyzed, and for each class k in

Table 1, about 20 regions were sampled in each image.

By using the visible and infrared radiance values of u

and v; monthly values of the average Uk ¼ ð %uk; %vkÞ;
standard variation Sk ¼ ðsuk; svkÞ; and the correlation

between the two (Cuv) were calculated. Since it turned

out that the correlation was insignificant (Cuvo0:056),

we employed the standard Euclidean distance rather

than the Mahalanobis’ generalized distance, which is

suitable for the analysis of correlated cases. The result

will be explained in Section 3.1.2.

2.2. Smoke detection in NOAA AVHRR images

The NOAA AVHRR images have higher spatial

resolution than the GMS VISSR images. As before,

texture analysis is implemented for the normalized

difference image calculated from the visible (channel 1;

0.58–0:68 mm) and thermal infrared (channel 4; 10.3–

11:3 mm) channels:

DNOAA ¼ ðun � vnÞ=ðun þ vnÞ: ð4Þ

Here, un and vn stand for the DN of channel 1 and 4,

respectively (no enhancement factor is introduced in this

case). Note that the width of this visible channel is much

narrower than the VISSR visible channel (0.5–0:9 mm).

The spatial resolution of the thermal infrared channel

ð1:1 kmÞ is 4.5 times better than that of the VISSR

thermal infrared channel. Thus one can expect increase

in the accuracy of smoke detection for AVHRR, though

the observation is more infrequent for AVHRR than for

VISSR.

Table 1

Training classes

Index Class name Index Class name

AG Smoke over the ground OC Ocean

AO Smoke over the ocean VE Vegetation

CT Thin cloud DS Desert

CG Cloud over the ground SG Sun glitter

CO Cloud over the ocean

Fig. 1. A set of training areas sampled for the classes in Table 1

(image size is 1200 � 800 pixels) (2 September 1997).
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The following three conditions are applied to extract

the smoke area:

DNOAA > 0:2;

vno200;

fmðr; yÞodNOAA: ð5Þ

The second condition means that the brightness

temperature in the thermal infrared band is higher than

280 K; as in the case of VISSR. The result will be given

in Section 3.2.

2.3. Derivation of aerosol optical thickness from AVHRR

images

The satellite image can also be exploited to derive the

aerosol optical thickness, which is an essential parameter

to check the uniformity of the smoke column amount.

Here we use the dark target method to estimate the

optical thickness (Nakajima and Higurashi, 1997; Ru

et al., 2000; Asakuma et al., 2000). Radiation compo-

nents are calculated by the algorithm and aerosol

models incorporated into the 6S code (Vermote et al.,

1997a,b), a versatile code developed for the purpose of

atmospheric correction of satellite data. Sea areas in the

NOAA AVHRR channel 1 images are analyzed to

obtain the smoke optical thickness at 550 nm; t550:
In the 6S code, the apparent reflectance rn that

corresponds to the radiance observed by a satellite

sensor is expressed by using the reflectance from the

atmosphere ra; the reflectance from the vicinity of the

target re; and the target reflectance rc as

rn ¼ ra þ
e�t=ms þ tdk

1 � reS
frce

�t=mv þ retdmg: ð6Þ

Here ys and yv are the solar and satellite zenith angles,

respectively, ms ¼ cos ys and mv ¼ cos yv are their

cosines, tdk and tdm are the downward and upward

diffuse transmittance, respectively, S the spherical

albedo of the atmosphere, and t denotes the optical

thickness of the atmosphere at the observation wave-

length. If we give ys; yv; f (the relative azimuth between

the satellite and solar directions), rc; re; and t550 as input

parameters to the 6S code, and select an appropriate

standard molecular profile and an aerosol model, the

code calculates ra; tdm; tdk; and S: Subsequently, Eq. (6)

gives us the reflectance at the top of the atmosphere. In

the case of sea areas treated here, we assume the

reflectance of the target and adjacent pixels to be the

same (re ¼ rc): this value is assumed to be 2% for

AVHRR channel 1 so that we obtain a result in

agreement with the ground observation (see Section 3.3).

In Fig. 2, retrieval points are designated as a–d near

Kalimantan. The results at these points will be used in

Section 3:4 to discuss the relationship between the

textural mean and the uniformity of the aerosol column

amount. Similarly, the variation of t550 is also derived at

point A above sea near Singapore. The monthly change

of t550 at this point during November 1997 is used for

the validation of the present method against the sky

radiometer data obtained at Singapore.

Fig. 3 shows an example of the relationship between

rn and t550: This is a result computed from the data at

point A in Fig. 2 (10 November 1997) with ys ¼ 48:41;
yv ¼ 0:51 and f ¼ 26:91: We adopted tropical model for

the atmospheric profile and forest-fire smoke model for

the aerosol model in the 6S calculation. The aerosol

optical thickness t550 is estimated from this figure by

equating the observed apparent reflectance

rNOAA
1 ¼ S1u1 þ I1 ð7Þ

to rn: Here, S1 and I1 are, respectively, the slope and

intercept calibration constants of the AVHRR channel 1

(Rao and Chen, 1996). Similar procedures are applied to

derive the aerosol column amount from the satellite data

of the Indonesian forest fire. The results will be

presented and discussed in Section 3.3.

Fig. 2. AVHRR ch. 1 image on 10 November 1997: The

monthly change of t550 (aerosol optical thickness at 550 nm) at

point A is compared with the result of Singapore sky-

radiometer measurement. Points a–d, located in the sea area

near Kalimantan, are the retrieval points of the aerosol optical

thickness to study the aerosol homogeneity.

Fig. 3. Relationship between t550 and rn at point A in Fig. 2

(10 November 1997).
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3. Validation of the smoke extraction and discussion

3.1. GMS images

3.1.1. Texture analysis

The difference image on 2 September 1997 between

the visible and thermal infrared channels of GMS

VISSR is shown in Fig. 4. Note that the spatial

resolution of Fig. 4(a) (conformed to the visible resolu-

tion) is four times better than that of Fig. 4(b)

(conformed to the thermal infrared resolution). The fire

smoke is recognized as the white area located at the

south part of Kalimantan and extending toward the

northwest direction. Texture analysis is applied to

Fig. 4(b), and the result is shown in Fig. 5. In this case

the GLDV vectors are calculated with r ¼ 1; y ¼
01; Nx ¼ Ny ¼ 9 and Ng ¼ 256 ð8 bitÞ: The condition

of r ¼ 1 is employed to make comparisons among

contiguous pixels. In addition to y ¼ 01; we also tested

the angular parameter of y ¼ 901 and y ¼ 451 (for which

the distance r is increased by a factor of
ffiffiffi
2

p
), but no

recognizable effects were detected. Therefore, as far as

this case is concerned, spreading of smoke is diffusive,

with little influence from the wind field. Under such

situations, textural mean in Eq. (1) works well as a

discriminator of the fire smoke against background land

surfaces. The present texture size of Nx ¼ Ny ¼
9 ð40 km � 40 kmÞ is chosen in consideration of the

spreading of smoke from a single fire spot: a larger size

would result in involvement of unnecessary information,

while a smaller size may suffer from lack of statistics.

In Fig. 5, black regions are considered to represent the

homogenous regions in the difference image. Fig. 5(a) is

the result of the simple texture analysis. It is confirmed

in this figure that although the smoke regions are

extracted, we need an additional measure to distinguish

the smoke from the sea surface, which also displays a

homogenous feature in this image. Application of

conditions in Eq. (3) removes the sea surface areas and

extracts the smoke areas, as indicated in Fig. 5(b)

(dGMS ¼ 0:3). The effect of the threshold value, dGMS;
is discussed in the next subsection.

3.1.2. Comparison of smoke extraction results by

Euclidean classification and texture analysis

In Fig. 6, we show a map in the DN space clustered

with the method described in Section 2.1.2. This map is

for GMS images around Indonesia as illustrated in

Fig. 1. Fig. 6 is obtained by means of the standard

Euclidean distance. For the sake of comparison, the

region that satisfies the first and second conditions in

Eq. (3) (DGMS > 0:2 and vgo145) is also illustrated

(below the horizontal line and right side of the tilted

line). In this region of the map, sun glitter (SG) and

desert (DS) become relevant only for more expanded

area scenes. The designated region covers most part of

the categories of AO and AG, smoke over the ocean and

smoke over the ground. The reason that part of the AO

region is found left side of the tilted line is primarily due

to contamination from the ocean (OC). This is

unavoidable in the visual determination of the training

areas, though only a limited number of pixels are

actually classified into this ‘‘false’’ category (see below).

Another important aspect to be noted here is the

presence of vegetation (VE) and a small portion of

cloud over the ocean (CO) in the region specified by the

quoted conditions. In order to detect smoke regions

efficiently, these features should be distinguishable by

means of texture analysis.

An example of the present supervised classification is

illustrated in Fig. 7(a). The method is applied to the area

on and around Kalimantan (2 September 1997). Gray

regions depict the fire smoke in this binary image. Black

pixels are those belonging to AO but being classified in

the ‘‘false’’ region of DGMSo0:2: they represent only

5.8% of the entire smoke region (AO + AG). In

Fig. 4. Normalized difference images obtained with GMS-5 visible and thermal infrared channels (2 September 1997). Image size is

conformed to (a) that of the visible image (350 � 335 pixels) and (b) that of the thermal infrared image (88 � 83 pixels).
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Fig. 7(b)–(f ) we show the binary images (SEI) obtained

with various values of the threshold parameter dGMS in

Eq. (3). When dGMS ¼ 0:2 (Fig. 7(b)), only a very limited

portion of the image is categorized into the smoke area.

When dGMS ¼ 0:4 (Fig. 4(f)), on the other hand, smoke

areas overlap with each other, with no clear separation

between the neighboring areas. The SEI with dGMS ¼ 0:3
(Fig. 7(d)) reasonably agrees with Fig. 7(a) regarding the

smoke distribution. In fact when all the pixels are

considered on the Kalimantan island, agreement in the

classification of pixels turns out to be 94% between

Fig. 7(a) and (d). In the northern part of Kalimantan,

more pixels are categorized into smoke pixels in Fig. 7(a)

than in Fig. 7(d). This is ascribed to the fact that in

texture analysis structures smaller than the window size

ð9 � 9Þ tend to be excluded because of the threshold

condition of fmðr; yÞodGMS:

Fig. 5. (a) Texture-analyzed image (TAI) calculated from the difference image shown in Fig. 4 (2 September 1997). Image size is

88 � 83 pixels. (b) Smoke-extracted image (SEI) obtained with dGMS ¼ 0:3:

Fig. 6. Cluster map from GMS-5 images in September, 1997,

obtained with the standard Euclidean distance. The lines define

a region that satisfies the first and second conditions in Eq. (3)

(see text).

Fig. 7. Smoke-extracted images (SEI) (2 September 1997). (a)

Result by the standard Euclidean classification, and (b)–(f) by

textural analysis for various values of dGMS:
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3.1.3. Validation of classification results using histograms

Histograms are generated for the visible and thermal

infrared channels of GMS VISSR on the basis of the

DN of pixels in the images classified using the supervised

classification and the texture analysis. In Figs. 8(a)–(c)

and (d)–(f), we show the results for the visible and

thermal infrared channels, respectively: (a) and (d)

illustrate distributions obtained from all the images in

September 1997. In Fig. 8(b) and (e) are for the areas

that have been classified as the smoke region in the

supervised classification, while (c) and (f) correspond to

the smoke region in the texture analysis with dGMS ¼
0:3: Comparison between (b) and (c) (visible band)

indicates that the supervised and texture results are in

good agreement regarding the mode value of the DN.

The standard deviation for the former is 13.76, whereas

it is 11.56 for the latter. Similarly, the standard deviation

of (e) (supervised) is 20.23, while that of (f) (texture) is

16.84. Thus, for both the visible and thermal infrared

bands, histograms from texture analysis is found to be

more centered around the mode than those from the

supervised classification.

In texture analysis, the width of each histogram varies

in accordance with the threshold d: Nevertheless once

the GLDV vectors are computed, it is easy to study the

effect of this parameter on the classification result. In the

supervised classification, on the contrary, determination

of the training class is more or less made on a subjective

basis, and it is laborious to examine a large number of

sample data.

3.2. Comparison of AVHRR and VISSR results of

texture analysis

Fig. 9(a) displays the normalized difference image

between the channel 1 and channel 4 of AVHRR on 2

September 1997: Compared with the VISSR case shown

in Fig. 4, smoke fire (white pixels) extends more toward

the sea area northwest of Kalimantan. This is pre-

sumably due to the difference in the wavelength bands in

the two sensors (see Section 2.2), since it is unlikely that

the difference in the spatial resolution influences the

smoke distribution in this way.

In Fig. 9(b), we show the TAI obtained from the

difference image of Fig. 9(a), with r ¼ 1; y ¼ 01; Nx ¼
Ny ¼ 9 and Ng ¼ 256: Compared with the VISSR result

in Fig. 5, areas with uniform reflectance (black regions

in the binary image) are more separately distributed over

Kalimantan. This is presumably ascribed to the better

spatial resolution of AVHRR. In addition, it is seen that

a larger number of smoke areas appear over the sea area,

particularly in the northwest area of the island. This

reflects the difference in the smoke distribution over the

sea area found in the difference images, Fig. 4 for

VISSR and Fig. 9(a) for AVHRR, as mentioned above.
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Fig. 8. (a)–(c) Histograms from the GMS visible channel, and (d)–(f) those from the thermal infrared channel. (a) and (d) are for all

pixels in September 1997, (b) and (e) results by the standard Euclidean classification, and (c) and (f) those by the texture analysis.
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The SEIs in Fig. 10 are derived from Fig. 9(b) by

applying the conditions in Eq. (5), where the threshold

parameter dNOAA is varied between 0.2 and 0.4

(Rectangular regions in Fig. 10(b) and (c) will be used

in the discussion in Section 4). Comparison of

Fig. 10(a)–(e) with Fig. 9(a) (difference image) indicates

that the best agreement of the smoke region is attained

for Fig. 10(c), which corresponds to dNOAA ¼ 0:3: When

Fig. 9. (a) Normalized difference image obtained from AVHRR ch. 1 and ch. 4 (2 September 1997). Image size is 376 � 326 pixels,

extracted from the original size of 1024 � 1024 pixels. Texture analysis is conducted on the original image. (b) TAI from the difference

image in (a).

Fig. 10. SEI obtained by using Eq. (5), with (a) dNOAA ¼ 0:2; (b) dNOAA ¼ 0:25; (c) dNOAA ¼ 0:3; (d) dNOAA ¼ 0:35 and (e) dNOAA ¼ 0:4
(2 September 1997). Marked areas in (b) and (c) will be compared in Fig. 15:

K. Asakuma et al. / Atmospheric Environment 36 (2002) 1531–15421538



this figure is compared with Fig. 7(d) from the GMS

VISSR, it is found that smoke regions are more

separated in Fig. 10(c): this separation is particularly

conspicuous in the southern part of the island. The

number of thus separated regions is 89 for the entire

region depicted in Fig. 10(c), whereas the number is only

28 in the case of VISSR. This fact suggests that higher

spatial resolution of AVHRR results in the increase in

the number of separated regions.

It turns out that when the spatial resolution of

Fig. 10(c) is matched with that in Fig. 7(d), 96% of

pixels show agreement in the classification result

between the two figures. Therefore, the present SEI

results are satisfactorily consistent with each other. The

threshold value of the d parameter is 0:3 for both the

VISSR and AVHRR cases. This coincidence is ex-

plained by the fact that the texture window size of Nx �
Ny ¼ 9 � 9 is sufficiently smaller than the smoke area

for each case, regardless of the difference in the spatial

resolutions. With regard to this window size effect, the

following two cases are also examined. First, the spatial

resolution of AVHRR is reduced by a factor of 1/4.5, so

that it becomes equal to the resolution of VISSR. When

the identical window size of 9 � 9 (with the same

threshold parameter of dNOAA ¼ 0:3) is adopted, we

obtain a figure similar to Fig. 10(c). This result supports

the interpretation of the equal values of d mentioned

above. Second, the AVHRR image is analyzed with an

increase window size of 41 � 41: Although the area size

corresponding to this enlarged window is equivalent to

that of an VISSR window of 9 � 9 pixels, a figure similar

to Fig. 10(c) is obtained when dNOAA is increased to 0.5.

This increase is observed even for the ‘‘pure’’ smoke

areas (i.e. no effect of background surfaces), and it is

explained by the change in the distribution of elements

of GLDV vectors.

Fig. 11 shows the variation in the number of smoke

pixels on Kalimantan, plotted for 12 days in September

1997. Open circles depict the variation in the AVHRR

SEI with dNOAA ¼ 0:3 (dotted line) and dNOAA ¼ 0:35

(broken line), while closed circles that in the VISSR SEI

with dGMS ¼ 0:3 (solid line). In this figure, the left and

right ordinates apply to the AVHRR and VISSR

images, respectively. The relative scale of these two is

given in accordance with the actual ratio (20.25:1) of the

pixel numbers in the two cases. Thus, Fig. 11 suggests

that in terms of the smoke pixel numbers, the VISSR

result with dGMS ¼ 0:3 is consistent with the AVHRR

result with dNOAA ¼ 0:3–0.35. We obtain a correlation

coefficient of 0.91 between these VISSR and AVHRR

ðdNOAA ¼ 0:3Þ results.

3.3. Smoke optical thickness from AVHRR images

Variation of the aerosol optical thickness at

550 nm; t550; is shown in Fig. 12 (open circles). This is

obtained from the data on point A in Fig. 2 (above sea

surface near Singapore) using the method described in

Section 2.3. This figure also shows sky-radiometer data

observed at Singapore (filled circles). A data point on

November 10 exhibits a considerably large value of

t550 ¼ 1:3; presumably due to local cloud above the

observation site. Except for this point, the two data

show a reasonable agreement with a correlation

coefficient of 0.84. Thus, it is concluded that the method

in Section 2.3, particularly the assumption on the sea

surface reflectivity (2%), is appropriate in this case. The

optical thickness is used in the following subsection to

discuss the relationship between the texture threshold

dNOAA and the aerosol column amount.

3.4. Relationship between the texture threshold value and

aerosol column amount

Here we discuss the relationship between the thresh-

old value of the texture analysis dNOAA and the
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coefficient of variation in the smoke optical thickness.

Fig. 13 depicts the marked regions in Fig. 10(b) and (c)

(the same rectangular area) in an expanded scale.

Besides, the smoke regions in Fig. 10(c) (with

dNOAA ¼ 0:3) are illustrated in gray, while those in

Fig. 10(b) (with dNOAA ¼ 0:25) in black. Regions desig-

nated as (a1)–(a4) are those classified as one smoke

region when dNOAA ¼ 0:3; but separately classified in the

case of dNOAA ¼ 0:25: The same applies to regions (b1)–

(b3), (c1)–(c2), and (d1)–(d2). Each of (a1)–(d2) is

composed of 5 � 5 pixels. Table 2 lists the optical

thickness t550 obtained for each region using the method

of Section 2.3. The parameter s in the table is the

coefficient of variation defined as

s ¼

PNx

i¼1

PNy

j¼1 ðtij � t550Þ
2

ðNxNy � 1Þt550
2

" #1=2

; ð8Þ

where t550 denotes the average value of t550 in the 5 � 5

window.

In Table 2, the average values are different among

the four groups of (a1)–(a4), (b1)–(b3), (c1)–(c2), and

(d1)–(d2). Thus, it is confirmed that the essential aspect

of the smoke extraction by texture analysis is not to

select regions with a particular value of t550; but to

detect regions with uniform values of t550 in a satellite

image. For this reason, the method becomes useful when

combined with the spectral information such as those in

Eqs. (3) and (5).

Next we consider the coefficient of variation s in each

group. In group (a1)–(a4), the coefficient changes in a

region of 0.06–0.08 for dNOAA ¼ 0:25; and it increases to

0.09 when dNOAA ¼ 0:3: Similar tendency is also found

for other three groups. Therefore, increase in the

threshold value leads to increase in the coefficient of

variation, as expected from the property of texture

analysis.

3.5. Inhomogenous smoke distribution

So far we have dealt with cases where smoke detection

is accomplished by considering the homogeneity in the

texture window. The TAIs in Figs. 5(a) and 9(b), for

instance, exhibit insignificant dependence on the angular

parameter y; indicating little influence from wind

transportation. When strong wind field is present, on

the contrary, angular dependence could be brought

about, as in cirrus studies by Kuo et al. (1988). Fig. 14

displays SEIs of the sea area surrounded by Kalimantan,

Jawa, and Smatera islands on 8 October 1997, when the

forest fire had subsided, but still emitted dense smoke.

The wind direction was reported as indicated in

Fig. 14(a), from east at Isakan (southern Kalimantan)

and Tanjuang Panda (east Kalimantan), and from south

at Jakarta (Ru et al., 2000). In (b)–(h), we show the

results with y ¼ 01; 151;y; 901: Evident striations are

found along the North–South direction for y ¼ 01 and

901: they become inconspicuous as the angle is changed

toward y ¼ 451; at which almost all the homogenous

regions appear to connect with each other. This angular

dependence seems to be consistent with the smoke

Fig. 13. Enlarged depiction of the marked areas in Fig. 10(b)

and (c). (a1)–(a4), (b1)–(b3), (c1)–(c2) and (d1)–(d2) are the

retrieval areas of t550 (5 � 5 pixels).

Table 2

Variance of t550 in the areas (a1)–(d2) of Fig. 13

Area a1 a2 a3 a4 b1 b2 b3 c1 c2 d1 d2

t550ðd ¼ 0:25Þ 2.61 2.35 2.44 2.57 1.08 1.49 1.33 1.36 1.63 1.78 2.06

t550ðd ¼ 0:30Þ 2.49 1.30 1.50 1.93

sðd ¼ 0:25Þ 0.07 0.08 0.06 0.07 0.05 0.09 0.09 0.07 0.03 0.05 0.02

sðd ¼ 0:30Þ 0.09 0.15 0.10 0.08
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transportation expected from the wind direction data in

Fig. 16(a), though more analysis using ancillary data

would be required to elucidate the effect in detail.

Nevertheless, this example demonstrates well that

texture features can be exploited to study the smoke

transportation above the ocean, where the background

exhibits texture features sufficiently homogenous.

4. Conclusions

In this paper, we have analyzed satellite images of the

Indonesian forest fire in 1997. Unsupervised, automatic

extraction of fire smokes has been implemented by

combining the multi-spectral and texture information.

Comparison between GMS-5 VISSR and NOAA-14

AVHRR results has shown that when the threshold

values of the texture analysis d are properly chosen,

good agreement can be obtained in spite of the marked

difference in their spatial resolutions. We have used the

textural mean obtained from GLDV representations to

determine whether a region in an image is homogenous

or not. This is basically the same as the analysis by using

the coefficient of variation. In fact, the results of Section

3:4 confirms that the resulting homogeneity of the

aerosol optical thickness in a texture window is

determined by the threshold value, though it is also

dependent on the window size employed. More detailed

information about the smoke distribution is also

available from the texture analysis, and we have briefly

discussed the angular dependence of the texture-

analyzed images. Such types of application would be

particularly useful to detect transportation of fire smoke

over the ocean.
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