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DEGENERACY AND ALL THAT 
 

The Nature of Thermodynamics, Statistical Mechanics and Classical Mechanics 

Thermodynamics 

The study of the equilibrium bulk properties of matter within the context of four laws or ‘facts of 

experience’ that relate measurable properties, like temperature, pressure, and volume etc. It is 

important to understand that from the viewpoint of thermodynamics the microscopic nature of matter 

is irrelevant, that is, thermodynamics would apply equally well if matter formed a continuum. In 

addition, thermodynamics is a measurement or laboratory based science and is not a branch of 

metaphysics.  

 

Statistical Mechanics  
Statistical Mechanics is a statistical approach to solving the classical n body problem in order to 

study the same bulk properties of matter as thermodynamics but doing so at the microscopic level. In 

this way Statistical Mechanics allows an understanding of the equilibrium properties of matter at a 

molecular level.  Statistical Mechanics makes heavy use of Thermodynamics, Classical Mechanics 

and Quantum Mechanics for its development and hence the perquisites for this course. 

 

Classical Mechanics 

The Classical Mechanical approach to studying the n body problem involves solving six simultaneous 

differential equations for each particle in the system. This assumes one knows the initial position q(t) 

and momentum p(t) of each particle at time to. Since the bulk properties of the system of interest are 

themselves functions of the q and p, i.e., G=G[p(t),q(t)] we can then do a time average of the form 
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where  is long enough to ensure G is independent of  , i.e., fluctuations are negligible.  

Until the early 1950’s, such  computations were largely beyond reach but since then with the advent 

of computers, the subject of ‘molecular simulation’ or ‘molecular dynamics’ has progressed to the 

point where the classical mechanical computations of the bulk equilibrium properties of all states of 

matter  are often considered more accurate than the actual experimental measurements of the same 

properties.  

 

Quantum Mechanics: 

The n body problem in quantum mechanics is similar to the problem in classical mechanics although 

the formalism is quite different. Here one attempts to solve the n body Hamiltonian,   
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for a system s, of n particles which, provided the particles are distinguishable and non-interacting, we 

can write, 
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The more general situation is where the system consists of n indistinguishable and non-interacting 

particles, in which case the system wave function is not a simple product over the single particle 

wave functions as in the case of distinguishable particles, but is instead given by the determinant: 
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where the  symbol on the determinant denotes the distinction between Fermion and Boson 

systems. This distinction arises naturally because it seems all known particles are one or the other. 

Thus:  

sym   - Bosons (photons, mesons and atoms with an even number of fermions) 

anti sym    - Fermions (electrons, protons, neutrons and atoms with an odd number of fermions) 

For fermions the occupation number of any quantum state is 0 or 1 (Pauli Exclusion Principle) while 

bosons have no such restriction. Incidentally, if a collection of fermions are sufficiently far apart so 

there is no wave function overlap, then these particles can be treated as distinguishable and the 

Pauli principle does not hold. 

Finally, quantum mechanical averages for system properties is given by the usual expression 
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Quantum Mechanical Degeneracy 

Degeneracy plays a fundamental role in the development of Statistical Mechanics and so we will 

remind of you of what you probably already know since the prerequisite for the course includes a 

course in Quantum Mechanics. 

Consider a single free particle constrained to move in three dimensions in a cubic box of length L on 

a side. The potential in the box is zero everywhere and the potential outside the box is infinite (what 

is the purpose of this constraint?). The wave equation for this so called ‘particle in a three 

dimensional box problem’ is given by: 
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For problems in which the potential energy can be separated in terms of Cartesian coordinates we 

can write 
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and    x y zE E E E    

 

Then, the assumption of a solution of the form:  

( , , ) ( ) ( ) ( )x y z X x Y y Z z   

leads to the separation of the three dimensional second order partial differential equation into three 

identical ordinary second order differential equations, one for each coordinate, x, y, and z, and of the 

form:   
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Solution leads to three identical expressions for the energy of the form: 
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 Here nx
 is the particle quantum number and Lx is the x dimension of the box.  

 The three dimensional solution follows immediately since the energies add and the wave functions 

multiply giving 
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      and where again the n’s are non-zero integers. 

 The corresponding wave function is the product given by, 
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 This brings us the point of this discussion, namely the concept of degeneracy.  

 Definition of Degeneracy: 

 If a subset of wave functions 1, , ,j j k   , give, when substituted back into Ĥ E   the same 

value for En, we say En is k-j+1 degenerate. Understanding the concept of degeneracy is critical to 

understanding statistical mechanics. 
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Example: 
For the ground state of our particle in a 3 dimensional box we have nx = ny = nz = 1 and is clearly  

non-degenerate. However, if nx = 2 and ny= nz=1 we have 
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All three give the same value of 
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 on substitution back into the wave equation. We say then 

that the energy level 6h2/8mL2 is 3 fold degenerate. You might wish to show that the energy level in 

which E=14 is 6 fold degenerate.       

 

States vs Levels  

In the previous case of 
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 we saw that the energy level 6 had a degeneracy of 3 

corresponding to three different wave functions. In other words there exists a one to one 

correspondence between an energy state and its wave function, i.e, 

 

    = 6 for 1,2,3j jE j      

 

The important point here is that in this course we will typically refer to a systems energy ‘state’, not its 

energy level.  In other words, if we say that a particular energy level is 10 fold degenerate we mean 

that there are 10 wave functions or alternatively 10 energy states, E1, E2, … E10 corresponding to that 

particular energy level. There will also be times when we have to use ‘levels’ as in the evaluation of 

the electronic partition function, but in those cases we will usually include the degeneracy, gi  in our 

formulism.  

 

Density of States for Large n for the Particle in a Box 

All material particles, atoms, electrons etc. are either Fermions or Bosons and strictly speaking, the 

form of statistics we use to describe these systems should reflect that fact. However, provided that 

the average quantum state available to a particle is unoccupied, that is, 1jc   where jc  is the 

average occupation number of particle state j, then we can alternatively use the Maxwell Boltzmann 

equation that allows us to factor the system partition function into the product of single particle 

partition functions for relatively easy computation. The validity of this approximation usually depends 

on the fact that translational motion alone ensures that this condition holds. Furthermore, since the 
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model for translational motion is the three dimensional particle in a box it behooves us to look at the 

question of the density of quantum states for a typical particle.  

 

If one calculates the degeneracy of each energy level for a particle in a cubic box for, say a dozen or 

so values of n, they will see that the degeneracy does not vary uniformly in any predictable way with 

increasing E except to say that while the trend is erratic, it does increase with E and becomes more 

uniform and dense for large E. In particular, we see that three dimensional energy expression is 

actually an equation of a sphere of radius R and whose values of R(nx,ny,nz), when plotted, are 

confined to 1/8 quadrant of the sphere because all of the n’s must be positive and non-zero. Why? 
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Note that we have written E  for consistently with the text. 

 

For large values of the energy the density of points essentially fills the volume of the quadrant.  

We can now treat R or   as a continuous variable so we can calculate the number of lattice points 

consistent with an energy ≤  which is essentially the volume of the eighth quadrant of the sphere.  

We can now write for the number of energy states, ( )    
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and calculate the number of states in a thin shell of thickness  .  Thus, 
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Taking T=300K, m=10-25 kg, L=10 m and ∆ε=0.01ε we find that the degeneracy of a single particle 

(atom, molecule, etc.) moving in 3 dimensions at room temperature in a typical room 10 m on a side 

is approximately 1030 which is a huge degeneracy. This means that the average energy level 

corresponding to 3/2kT has associated with it roughly 1030 energy states all with equal probability 

from the point of view of our particle. We now look at how the degeneracy changes when the system 

contains N non-interacting particles. 

The system energy then follows from the single particle expression by obvious extension, 
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Again, by analogy with single particle case, we have an equation for an N dimensional hypersphere 

of radius R whose volume is given by   
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and the corresponding degeneracy for the entire system of N particles takes the form, 
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Here  (N) is the usual gamma function defined as  
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with the property that    
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However, as large as the single particle degeneracy was found to be it is completely insignificant 

compared to a system of N particles in the same volume. Using the same conditions as for the one 

dimensional case we find our N particle degeneracy to be on the order of (10 )NO  or typically, 

2010(10 )O . Now there’s a number to be reckoned with!  

The value of this discussion will become evident when we get to chapter 4 at which time we will 

revisit this issue.  
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